期刊文献+

基于半参数极值理论的高频数据风险价值研究 被引量:2

Reasearch on VaR of High Frequency Data Based on Semiparameterized Extreme Value Theory
下载PDF
导出
摘要 高频数据分析是理解市场微观结构极为有效的手段,在正态性假设不成立情况下,本文采用半参数极值理论对高频数据的分布尾部进行估计,进而估计风险价值。返回检验的结果表明,此方法可以比较精确地度量风险价值。 The analyses of high frequency data are a very effective approach to understand the microcosmic structure of market.Under the condition that the normality of data is not true,extreme value theory based on method of partially parameterization is adopted to fit the tail of the return distribution for high frequency data,and further to estimate value at risk.The statistical test for the data of Shenzhen index is conducted and indicates that value at risk can be well estimated by the semi-parameterized extreme value theory.
出处 《河南科技大学学报(自然科学版)》 CAS 2008年第4期101-104,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(10771015)
关键词 金融学 风险价值 极值理论 高频数据 Finance Value at risk Extreme value theories High frequency data
  • 相关文献

参考文献9

  • 1Torben G, Andersen. Some Reflections on Analysis of High Frequency Data [ J ]. Journal of Business and Economic Statistics, 2000,4 : 146 - 153.
  • 2Charles A E, Goodhart, Maureen O' Hara. High Frequency Data in Financial Markets: Issues and Applications [ J ]. J Empirical Finance, 1997,4:73 - 114.
  • 3Danielsson J, de Vries C. Tail Index and Quantile Estimation with Very High Frequency Data[ J]. Journal of Empirical Finance, 1997,4:241 - 257.
  • 4Duffle D, Pan J. An Overview of Value at Risk [J ]. The Journal of Derivatives, 1997,4:7 - 49.
  • 5Yacine Alt-Sahalia,Andrew W Lo. Nonparametric Risk Management and implied Risk [ J ]. Journal of econometrics ,2000,94.
  • 6Hill. A Simple General Approach to Inference about the Tail of a Distribution [ J ]. Annals of Statistics,1975,35:163 - 1173.
  • 7Hall. Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Parameter in Nonparametric Problems [ J]. J of Multivariate Analysis, 1990,32 : 177 - 203
  • 8Jon Danielsson. Beyond the Sample:Extreme Quantile and Probability Estimation[ R/OL ]. Tinbergen Institute Rotterdam, Workingpaper, www. hag. hi. is/- jond/,1997a.
  • 9Jon Danielsson. Value-at-risk and Extreme Returns [ R/OL ]. Tinbergen Institute Rotterdam, Workingpaper, URL: www. hag. hi. is/-jond/, 1997b.

同被引文献37

  • 1唐勇,刘峰涛.金融市场波动测量方法新进展[J].华南农业大学学报(社会科学版),2005,4(1):48-54. 被引量:4
  • 2施红俊,陈伟忠.股票月收益实际波动率的实证研究[J].同济大学学报(自然科学版),2005,33(2):264-268. 被引量:10
  • 3尹优平,马丹.基于分布拟合方法的高频数据风险价值研究[J].金融研究,2005(3):59-67. 被引量:8
  • 4徐正国,张世英.多维高频数据的“已实现”波动建模研究[J].系统工程学报,2006,21(1):6-11. 被引量:20
  • 5Andersen T G, BoUerslev T. Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts[J].1998, 39(4): 885-905.
  • 6Dacorogna M M, Gauvreau C L, MulUer U A, et al. Changing time scale for short-term forecasting in financial markets [J]. Journal of Forecasting.1996, 15(3): 203-227.
  • 7Andersen T G, Bollerslev T, Diebold F X, et al. The Distribution of Realized Exchange Rate Volatility [J].2001, 96 (453): 42-55.
  • 8Ebens H.Realized Stock Volatility[D].1999.
  • 9Blair B J, Poon S, Taylor S J. Forecasting S&P 100 volatility: the incremental information content of implied vohtilities and high-frequency index retums[J].Journal of Econometrics.2001, 105 (1): 5-26.
  • 10Bamdorff-Nielsen, E O. Econometric Analysis of ILealised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics[J].2002(2002-W13).

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部