期刊文献+

Water Striders:The Biomechanics of Water Locomotion and Functional Morphology of the Hydrophobic Surface(Insecta:Hemiptera-Heteroptera) 被引量:2

Water Striders:The Biomechanics of Water Locomotion and Functional Morphology of the Hydrophobic Surface(Insecta:Hemiptera-Heteroptera)
下载PDF
导出
摘要 Water striders are insects living on the water surface, over which they can move very quickly and rarely get wetted. We measured the force of free walking in water striders, using a hair attached to their backs and a 3D strain gauge. The error was calculated by comparing force and data derived from geometry and was estimated as 13%. Females on average were stronger (1.32 mN) than males (0.87 mN), however, the ratio of force to weight was not significantly different. Compared with other lighter species, Aquarius paludum seems stronger, but the ratio of force to weight is actually lower. A. paludum applies about 0.3 mN.cm^-1 to 0.4 mN.cm 1 with its mid-legs, thus avoiding penetrating the surface tension layer while propelling itself rapidly over the water surface. We also investigated the external morphology with SEM. The body is covered by effectively two layers of macro-and micro-hairs, which renders them hydrophobic. The setae are long (40 μm-60μm) and stiff, being responsible for waterproofing, and the microtrichia are much smaller (〈10μm), slender, and flexible, holding a bubble over the body when submerged. Water striders are insects living on the water surface, over which they can move very quickly and rarely get wetted. We measured the force of free walking in water striders, using a hair attached to their backs and a 3D strain gauge. The error was calculated by comparing force and data derived from geometry and was estimated as 13%. Females on average were stronger (1.32 mN) than males (0.87 mN), however, the ratio of force to weight was not significantly different. Compared with other lighter species, Aquarius paludum seems stronger, but the ratio of force to weight is actually lower. A. paludum applies about 0.3 mN.cm^-1 to 0.4 mN.cm 1 with its mid-legs, thus avoiding penetrating the surface tension layer while propelling itself rapidly over the water surface. We also investigated the external morphology with SEM. The body is covered by effectively two layers of macro-and micro-hairs, which renders them hydrophobic. The setae are long (40 μm-60μm) and stiff, being responsible for waterproofing, and the microtrichia are much smaller (〈10μm), slender, and flexible, holding a bubble over the body when submerged.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期121-126,共6页 仿生工程学报(英文版)
关键词 force surface tension aquatic insect morphology microtrichia SETAE force, surface tension, aquatic insect, morphology, microtrichia, setae
  • 相关文献

参考文献1

二级参考文献8

共引文献16

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部