期刊文献+

下体负压联合旋转床模拟推拉效应的心率变化特征 被引量:1

Study on the changes of heart rate during "push-pull effect" simulation using a tilt table combined with a lower body negative pressure device
原文传递
导出
摘要 目的建立下体负压联合旋转床模拟推拉效应的方法,观察不同预先-Gz作用后Gz时心率反应的变化特征。方法8名健康男性志愿者,利用旋转床或联合下体负压随机暴露于预先0°(0Gz)、-30°(-0.5Gz)和-90°(-1Gz),分析在模拟推拉动作时-Gz或0Gz、"拉"时相及与单纯+1Gz时相同时间段的平均心率,比较在不同倾斜角度即不同预先-Gz作用或联合下体负压模拟推拉动作时"拉"时相的心率反应。结果利用旋转床模拟推拉动作时,在"推"时相即头低位时心率显著降低,随倾斜角度的增大降低更加显著,"拉"时相的心率随预先倾斜角度增大回升更明显。下体负压联合旋转床模拟推拉动作时,心率变化与单纯旋转床模拟推拉动作时基本一致。后者在"拉"时相与单纯+1Gz作用时相比心率变化更大,提示心率回升更加缓慢。结论旋转床或联合下体负压可以模拟推拉效应,其心率反应随预先-Gz值的增大在"拉"时相回升明显,并且受随后模拟+Gz负荷大小的影响。 Objective To set up a model simulating "push-pull effect" (PPE), and observe the changes of heart rate (HR) in the course of experiment. Methods Eight young male volunteers served as subjects. They underwent 3 profiles of simulated PPE on the tilt table respectively with or without lower body negative pressure (LBNP) as follows: ① +90° 30 s (+1 Gx)→0° 15 s (0 Gx)→ +90° 30 s (+1 Gx); ② +90° 30 s (+1 Gx)→-30° 15 s(-0.5 Gx)→ +90°30 s (+1 Gx) ;③→ +90° 30 s (+1 Gx)→-90° 15 s (-1 Gx)→ +90° 30 s (+1 Gx). In case of using LBNPdevice, negative pressure (-70 mm Hg) was applied within 3 s when subject was turned to + 90° position from 0 Gx or -Gx. Electrocardiograms were recorded during the experiment for observation of change of HR. Results HR during push phase (head-down tilt, HDT) with or without combining with LBNP decreased significantly along with the increase of HDT angle, and so did the rise again of HR during the pull phase ( turned to + 90°). In case of combining with LBNP, the restore of HR during pull phase was significantly slower than that without LBNP. Conclusions Tilt table combined with LBNP device can be used to simulate the push-pull effect. LBNP can be used to exaggerate the effect of "pull".
出处 《中华航空航天医学杂志》 CSCD 2007年第3期171-175,共5页 Chinese Journal of Aerospace Medicine
基金 军队杰出人才基金(04J012)
关键词 加速度 心率 下身负压 推拉效应 旋转床 Acceleration Heart rate Lower body negative pressure Push-pull effect Tilt table
  • 相关文献

参考文献20

  • 1Banks RD, Grissett JD, Turnipseed GT, et al. The "push-pull effect". Aviat Space Environ Med, 1994, 65(8): 699- 704.
  • 2Banks RD, Grissett JD, Saunders PL, et al. The effect of varying time at --Gz on subsequent +Gz physiological tolerance (push-pull effect). Aviat Space Environ Med, 1995,66 (8) : 723-727.
  • 3Williams RS, Werchan PM, Fischer JR, et al.Adverse effects of Gz in civilian acrobatic pilots. Aviat Space Environ Med, 1998,69(3) : 201.
  • 4Lehr AK, Koremoker JM, Bauel R,et al. Beat to beat finger blood pressure substantiates reduction of positive G. tolerance after negative Gz. Aviat Space Environ Med, 1994,65 (5) : 461.
  • 5Michaud VJ, Lyons T J, Hansen CM. Frequency of the "push- pull effect" in U. S. Air Force fighter operations. Aviat Space Environ Med, 1998, 69(11): 1083-1086.
  • 6Goodman LS, Lesage S. Physiological responses to a tilt table simulation of the push-pull effect. Aviat Space Environ Med, 1998,69(2) :202.
  • 7张五星,詹长录,耿喜臣,颜桂定,初旭,陆霞,于心亚.下体正压模拟推拉动作对+GZ耐力的影响[J].中华航空航天医学杂志,2000,11(2):73-76. 被引量:6
  • 8Doe CP,Self DA, Drinkhill MJ, et al. Reflex vascular responses in the anesthetized dog to large rapid changes in carotid sinus pressure. Am J Physiol, 1998, 275(4 Pt 2): H1169-1177.
  • 9Wen TS, Chen CF, Wang MR. A demonstration of the push- pull effects by using vertical rotating model. Aviat Space Environ Med, 1995,66(5):481.
  • 10姚永杰,赵梓刚,刘挺松,石俊,侯豹可,杨长斌.下体负压旋转床模拟航空推拉效应对心血管功能的影响[J].航天医学与医学工程,2001,14(6):400-404. 被引量:5

二级参考文献15

  • 1[1]Michaud VJ, Lyons TJ, Hansen CM. Frequency of the "push-pull effect" in U.S. air force fighter operations [J]. Aviat Space Environ Med, 1998; 69(11):1083-1086.
  • 2[2]Michaud VJ, Lyons TJ. The "push-pull effect" and G-induced loss of consciousness accidents in the U.S. air force [J]. Aviat Space Environ Med, 1998; 69(11): 1104-1106.
  • 3[3]Chelette TL, Albery WB, Bolia S, Tripp LD. Does COMBAT EDGE compromise G protection subsequent to a push-pull maneuver [C]. Aviat Space Environ Med, 1998; 69(3): 202.
  • 4[4]Estrella M, Forster MS. Smart aircrew integrated life support system [J]. Aviat Space Environ Med, 1998; 69(6): 614-615.
  • 5[5]Goodman LS, Banks RD, Grissett JD, Saunders PL. Heart rate and blood pressure responses to +Gz following varied-duration -Gz [J]. Aviat Space Environ Med, 2000; 71(2):137-141.
  • 6[6]Goodman LS, Lesage S. Physiological responses to a tilt table simulation of the push-pull effect [C]. Aviat Space Environ Med, 1998; 69(3): 202.
  • 7[7]Zhang WX, Zhan CL, Geng XC, Lu X, Yan GD, Chu X. Cerebral blood flow velocity by transcranial Doppler during a vertical-rotating table simulation of the push-pull effect [J]. Aviat Space Environ Med, 2000; 71(5): 485-488.
  • 8[8]Yao YJ, Zhao ZG, Liu TS, Shi J, Hou BK, Yang CB. Effect of lower body negative pressure and rotating-table simulated push-pull maneuver on cardiovascular function [J]. Hangtian Yixue Yu Yixue Gongcheng (Space Med & Med Eng), 2001; 14(6): 454-459.
  • 9Xing Z W,Aviat Space Environ Med,2000年,71卷,5期,485页
  • 10张五星,詹长录,耿喜臣.在加速度作用中的推拉效应[J].中华航空航天医学杂志,1999,10(1):54-57. 被引量:13

共引文献24

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部