期刊文献+

LS-SVM在CFG桩复合地基承载力预测中的应用 被引量:5

Application of LS-SVM to prediction of bearing capacity of cement-flyash-gravel pile composite foundation
下载PDF
导出
摘要 分析了CFG桩复合地基承载力的主要影响因素,提出了CFG桩复合地基承载力预测的一种新方法,即最小二乘支持向量机方法。根据有限的学习样本,建立了CFG桩复合地基承载力与其影响因素之间的非线性关系。结果表明:最小二乘支持向量机具有优秀的小样本数据学习能力和预测能力,将其用于CFG桩及其它刚性桩复合地基承载力的预测是可行的。 There are a lot of factors that influence the bearing capacity of composite foundation,and the relationship between them is complex and nonlinear.Based on the study of main factors that have great influence on bearing capacity of cement-flyash-gravel(CFG) pile composite foundation,the least squares support vector machine(LS-SVM) model of bearing capacity of composite foundation was established.The results show that the model has excellent learning ability and generalization and can provide accurate data prediction only with fewer observed samples.It is proved that the new method is a promising method for the determination of bearing capacity of CFG pile and other rigid piles composite foundation.
出处 《河北农业大学学报》 CAS CSCD 北大核心 2007年第1期116-119,共4页 Journal of Hebei Agricultural University
基金 河北省建设厅资助项目(2005-134)
关键词 最小二乘支持向量机 复合地基 承载力 预测 least squares support vector machine,composite foundation,bearing capacity,prediction
  • 相关文献

参考文献10

二级参考文献33

  • 1GB50007-2002.建筑地基基础设计规范[S].[S].,..
  • 2GB50021-2002.岩土工程勘察规范[S].[S].,..
  • 3Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1999.
  • 4NelloC JohnS-Taylor 李国政 王猛 曾华军 译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 5Vladimir N Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Rawlings J B. Tutorial overview of model predictive control[J]. IEEE Control Systems Magazines,2000,20(3): 38-52.
  • 7Vapnik V. Statistical Learning Theory [M]. New York : John Wiley, 1998.
  • 8Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3) :293-300.
  • 9Nie J H, Loh A P, Hang C C. Modeling pH neutralization processes using fuzzy-neutral approaches [J].Fuzzy Sets and Systems, 1996,78 (1): 5-22.
  • 10Vapnik V N. Statistical learning theory [M]. New York: John Wiley, 1998.

共引文献273

同被引文献36

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部