摘要
讨论了具有状态时滞的数值界不确定性线性系统的时滞相关鲁棒控制问题.将矩阵分解的思想应用于线性时滞系统的控制综合,利用Lyapunov-Krasovskii泛函方法,通过牛顿-莱布尼茨各项相互关系引入"0"阵,得到了系统的一种新的经过状态反馈控制后可鲁棒镇定的、基于LMI的、保守性较低的时滞相关条件.该方法既不需要对原系统进行模型变换,也不需要对交叉项进行界定.用算例说明了该方法的有效性.
The delay dependent robust control for linear value bounded uncertain systems with state delay is discussed. By introducing the matrix decomposition idea into the synthesis problem, incorporating with Lyapunov Krasovskii functional method and adding "zeros" matrix through the correlation of each item in Newton Leibniz formulae, based on linear matrix inequality a new delay dependent condition with less conservative is obtained which guarantees that the system is robust asymptotically stable via state feedback controller. Neither model transformation nor bounding cross terms is employed. At last a numerical example is given which illustrates the effectiveness of the offered method.
出处
《武汉理工大学学报(交通科学与工程版)》
2008年第3期503-506,共4页
Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金
国家自然科学基金项目资助(批准号:60634020)
湖南省自然科学基金项目资助(批准号:06JJ50145)
关键词
时滞相关
数值界不确定性
状态时滞
鲁棒控制
线性矩阵不等式
delay dependent
value bounded uncertainty
state delay
robust control
linear matrix inequality (LMI)