期刊文献+

人脑发育基因芯片数据的定量关联规则挖掘

Mining quantitative association rules from brain development microarray data
下载PDF
导出
摘要 目的探讨对脑发育过程有重要影响的基因及其之间的相互关系。方法采用R!KERT提出的基于半空间的定量关联规则挖掘方法对基因芯片数据进行分析。结果共挖掘出18条最优的定量关联规则,涉及到14条基因,其中有11条基因参与了发育过程,9条基因参与了神经系统的发育,4条基因参与了中枢神经系统及脑的发育;根据关联规则构建了基因之间的作用关系网络图。结论定量关联规则能够从基因芯片数据中挖掘有价值的信息,并且可以为进一步的研究提供信息。 [Objective] To discover important genes related to brain development and to infer their relationships. [Methods] The quantitative association rule based on half-space proposed by Rukert was used to analyze the brain development micmarray data. [Results] Totally 18 best quantitative association rules involving 14 genes were found, among which 11 genes were related to development, 9 genes to nervous system development, 4 genes to central nervous system or brain development. In addition, an interaction graph between genes was inferred from the 18 quantitative association roles. [Conclusion] Quantitative association nile may help to find out valuable information from micmarray data. Also it helps to formulate hypotheses about the function of genes for further research.
出处 《中国现代医学杂志》 CAS CSCD 北大核心 2008年第11期1532-1536,共5页 China Journal of Modern Medicine
基金 国家自然基金资助课题(No:60371034)
关键词 定量关联规则 基因芯片 数据挖掘 quantitative association rules microarray data data mining
  • 相关文献

参考文献16

  • 1R u CKERT U, RICHTER L KRAMER S. Quantitative association roles based on half-spaces: an optimization approach [R]. Technical Report TUM-I0412, TU M u nehen, Insfitut f u r Informatik, 2004.
  • 2GEORGII E, RICHTER L, RUCKERT U, et al. Analyzing microarray data using quantitative association rules[J]. Bioinformatics, 2005, 21(Suppl 2): ii123-ii129.
  • 3ASHBURNER M, BALL C, BLAKE J, et al. Gene ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25: 25-29.
  • 4BARRY R ZEEBERG, WEIMIN FENG, GEOFFREY WANG, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data[J]. Genome Biology, 2003, 4: R28.1-8.
  • 5BECQUET C, BLACHON S, JEUDY B, et al. Strong-association-ride mining for large-scale gene-expression data analysis: a case study on human SAGE data[J]. Genome Biology, 2002, 3: 12.
  • 6TAKAHIRO N. KENJI S. EMIKO F, et al. A system for finding association rides from microarray data and public databases [J]. Genome Informatics, 2000, 11: 356-357.
  • 7GAO C, TUNG AKH, XU X, et al. FARMER: Finding interesting rule groups in microarray datasets[R]. SIGMOD, 2004, 1318, 2004, Paris, France.
  • 8PEDRO CS, MONICA C, ANDRES R, et al. Integrated analysis of gene expression by association rules discovery[J]. BMC Bioinformatics, 2006, 7: 54-69.
  • 9TUZHILIN A, ADOMAVICIUS G. Handling Very Large Numbers of Association Rules in the Analysis of Microarray Data [M]. In Proceedings of the Eighth ACM SIGKDD International Conference on Data Mining and Knowledge Discovery; 2002, 23-26. Edmonton, Canada; 2002: 396-404.
  • 10CREIGHTON C, HANASH S. Mining gene expression databases for association rules[J]. Bioinformatics, 2003, 19: 79-86.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部