期刊文献+

用指数函数拟合长链分子超极化率时目标函数的选择

Correct target function for hyperpolarizability of per unit cell of long chain molecules when exponential function used to fit
下载PDF
导出
摘要 长链体系的轴向单元(超)极化率的饱和值Δp(∞),需要对有限的计算数据用函数拟合,再根据拟合函数外推求得。以a-be-cn作为拟合函数,有两拟合公式:p(n)-p(n-1)=a-be-cn和p(n)/n=a-be-cn。从理论上探讨了两公式目标函数不同存在的本质区别,结论是应该使用p(n)-p(n-1)作为目标函数,即合理的公式是前者。并用氢分子链,氟化氢分子链和聚乙烯为例,表明后者在链增长时没有正确的渐近行为,原因是当后者还原为对p(n)的拟合函数时含有一个ne-cn的项,而这一项会影响拟合后外推的饱和值的正确性。 To obtain the asymptotic value of the component of (hyper) polarizability tensor oritened along the backbone of polymeric systems, an approach is to follow the evolution of the longitudinal (hyper) polarizability in larger and larger oligomers and then to extrapolate to the infinite polymer limit. Set a-be^-cn as the fitting function, then the longitudinal hyperpolarizability per unit values of polymeric chains can be expressed in two ways:γ( n)-γ( n-1 ) = a-be^-cn and γ( n)/n = a-be^-cn. There are essential differences between them when studying them theoritically. And three linear polymers: (H-H) n, (F-H) n, and ( CH = CH) n have been employed to compare these two formulae. It shows that γ( n )--γ( n-1 ) yields a consistently improved accuracy and a better theoretical justification than γ( n)/n. The reason is that the latter formula comes from a representation for γ(n) , which has a nbe"on term. This term gives wrong effection to the asymptotic behavior.
出处 《化学研究与应用》 CAS CSCD 北大核心 2008年第5期531-536,共6页 Chemical Research and Application
基金 四川省教育厅自然科学青年基金项目资助(2006B088)
关键词 长链体系 超极化率 拟合函数 渐近行为 Polymeric chain hyperpolarizability fitting function asymptotic limit
  • 相关文献

参考文献23

  • 1Kanis D R,Ratner M A,Marks T.J.Design and construction of molecular assemblies with large second-order optical nonlinearities.quantum chemical aspects[J].Chem Rev,1994,94(1):195-242.
  • 2Long N.J.Organometallic compounds for nonlinear optics-The search for enlight enment![J].Angew Chem Int Ed Engl,1995,34:21-38.
  • 3Kirtman B.Nonlinear optical properties of conjugated polymers from ab initio finite oligomer calculations[J].Int J Quantun Chem,1992,43:147-158.
  • 4Jacquemin D,Perpete E.A,Champagne B.First hpolizability of H-(BN)N-H oligomers:analysis of geometry,asymmetry and delocalization effects[J].Phys Chem Chem Phys,2002,4:432-440.
  • 5Jncquemin D,Perpete E A,Andre J-M.Theoretical study of the longitudinal first hyperpolarizability of polysilaacetylene[J].J Chem Phys,2004,120(21):10317-10327.
  • 6Kirtman B,Hasan M.Linear and nonlinear polarizabilities of trans-polysilane from ab initio oligomer calculations[J].J Chem Phys,1992,96(1):470-479.
  • 7Kurtz H.A.Semiempirical calculation of the hyperpolarizabilities of polyenes[J].Int J Quantum Chem,1990,S24:791-798.
  • 8Kirtman B.Convergence of finite chain approximation for linear and non-linear polarizabilities of polyacetylene[J].Chem Phys lett,1988,143:81.
  • 9Archibong E F,Thakkar A J.Chain-length dependence of static longitudinal polarizabilities and hyperpolarizabilities in linear polyynes[J].J Chem Phys,1993,98(10):8324-8329.
  • 10Champagne B,Perpete E A,Jacquemin D,et al.Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push-pull π-conjugated systems[J].J Phys Chem A,2000,104(20):4755-4763.

二级参考文献38

  • 1Kirtman,B.Int.J.Quantum Chem.1992,43,147.
  • 2Kirtman,B.;Toto,J.L.;Robins,K.A.;Hassan,M.J.Chem.Phys.1995,102,5350.
  • 3Hurst,G.J.B.;Dupuis,M.;Clementi,E.J.Chem.Phys.1988,89,385.
  • 4Chopra,P.;Carlacci,L.;King,H.F.;Prasad,P.N.J.Chem.Phys 1989,93,7120.
  • 5Luo,Y.;Agren,H.;Koch,H.;Jorgensen,P.;Helgaker,J.Phys.Rev.1995,B51,14949.
  • 6Champagne,B.;Mosley,D.H.;Andre,J.M.Int.J.Quantum Chem.1993,S27,667.
  • 7Kirtman,B.Chem.Phys.Lett.1988,143,81.
  • 8Champagne,B.;Perpete,E.A.;van Gisbergen,S.J.A.;Baerende,E.J.;Snijders,J.G.;Ghaoui,C.S.;Robins,K.A.; Kirtman,B.J.Chem.Phys.,1998,109,10489.
  • 9Jaszunski,M.;Jorgensen,P.;Koch,H.;Agren,H.;Helgaker,T.J.Chem.Phys.,1993,98,7229.
  • 10Archibong,E.F.;Thakkar,A.J.J.Chem.Phys.1993,98,8324.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部