期刊文献+

负膨胀材料Zn(CN)_2和Cd(CN)_2的晶格振动分析 被引量:8

Lattice Vibrational Analysis of the Negative Thermal Expansion Materials of Zn(CN)_2 and Zn(CN)_2
下载PDF
导出
摘要 运用群论理论对负膨胀系数材料Zn(CN)2和Cd(CN)2的晶格振动进行了对称性分类,利用第一性原理密度泛函理论计算了它们布里渊区中心点的声子频率和Grüneisen参数,根据计算得到的各个模式所对应的本征矢对各个振动模式进行了指认,根据各模式Grüneisen参数讨论了负膨胀机理。在11个光学振动模式中,一个属于Zn/Cd原子的晶格振动模,位于223 cm-1/154 cm-1;5个属于C≡N刚性单元平移振动模;3个属于C≡N刚性单元天平动;2个属于C≡N刚性单元内振动。有7个振动模为拉曼活性,4个振动模为红外活性,两个振动模红外和拉曼均为非活性。C≡N刚性单元的3个低频平移振动模和全部天平动模的Grüneisen参数为负,对负热膨胀的产生有贡献,振动频率为47 cm-1的平移振动模具有最大的负Grüneisen参数,对负膨胀贡献最大。 We have classified the phonons of different symmetries in the negative thermal expansion materials of Zn(CN)2 and Cd(CN)2 based on group theoretical analyses and calculated the Brillouin zone center phonon frequencies and corresponding Gruneisen parameters by the first-principles plane-wave pseudopotential method based on density functional theory. Each mode is assigned according to the eigenvector analysis and the mechanism of negative thermal expansion is explained based on Gruneisen parameter calculations. There are 5 translational, 3 librational and 2 internal (stretching) modes of the C≡N units and 1 lattice mode of metal ions. Among these modes, 7 are Raman active, 4 are infrared active and 2 are both Raman and infrared inactive. The lowest 3 translational and all librational modes have negative Grtineisen parameters, responsible for the negative thermal expansion. However, the lowest phonon mode at 47 cm-1 for Zn(CN)2 and 39 cm-1 for Cd(CN)2 have the largest Grianeisen parameters and hence give rise to dominant contribution to the negative thermal expansion (NTE).
出处 《光散射学报》 2008年第2期145-150,共6页 The Journal of Light Scattering
基金 国家自然科学基金支持项目(No.2008A140012)
关键词 负膨胀材料 声子模 拉曼活性 红外活性 第一性原理 Negative thermal expansion phonon mode Raman active IR active group theory first-principles
  • 相关文献

参考文献13

  • 1T A Mary, J S O Evans, T Vogt, et al. Negative thermal expansion from 0. 3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272: 90-92.
  • 2J S O Evans, Z Zhu, J D Jorgenson, et al. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8 [J]. Science, 1997, 275 : 61 - 65.
  • 3Yasuhisa Yarnamura, Noriyuki Nakajima, Kazuya Saito. Low-temperature heat capacities and Raman spectra of negative thermal expansion compounds ZrW2O8 and HfW2O8 [J]. Phys. Rev. B., 2002, 66: 014301.
  • 4EJ Liang, SHWang, TAWu, etal. Raman spectroscopic study on structure, phase transition and restoration of zirconium mngstate blocks synthesized with a CO2 laser [J]. J. Raman Spectrosc, 2007, 38: 1186- 1192.
  • 5E J Liang, T A Wu, B Yuan, et al. Synthesis, microstructure and phase control of zirconium tungstate with a CO2 laser [J]. J. Phys. D: Appl. Phys., 2007, 40: 3219- 3223.
  • 6A K A Pryde, K D Hammonds, M T Dove, et al; Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7 [J]. J. Phys. : Condens. Matter, 1996, 8: 10973-10982.
  • 7D J Williams, D E Partin, F J Lincoln, et al. The disordered crystal structures of Zn (CN)2 and Ga (CN)3 [J]. J. Solid State Chem., 1997, 134:164 - 169.
  • 8A L Goodwln, C J Kepert. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials [J]. Phys. Rev. B., 2005, 71: 140301(R).
  • 9K W Chapman, P J Chupas, C J Kepert. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn (CN)2: an atomic pair distribution function analysis [J]. J. Am. Chem. Soc., 2005, 127: 15630-15636.
  • 10B F Hosldns, R Robson. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D- linked molecular rods [J]. J. Am. Chem. Soc., 1990, 112: 1546 - 1554.

同被引文献147

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部