摘要
Hong在2002年证明了如下结果:若S为gcd封闭集且|S|3,则在|S|阶整数矩阵环M|S|(Z)中,GCD矩阵(S)整除LCM矩阵[S].设e 1为给定的整数.在本文中,我们给出了关于四元gcd封闭集S的充分必要条件,使得在环M4(Z)中,定义在S上的e次幂GCD矩阵(Se)整除e次幂LCM矩阵[Se].这部分解决了Hong在2002年提出的一个公开问题.
In 2002, Hong showed that for any gcd-closed set S with | S |≤3, the GCD matrix (S) on S divides the LCM matrix [S] on S in the ring M|s| (Z) of | s| ×| s| matrices over the integers. Let e≥ be an arbitrary given integer. In this paper, a necessary and sufficient conditions on the ged closed set S with | S | = 4 such that the power GCD matrix (S^e)on S divides the power LCM matrix [ S^e ] on S in the ring M4 (Z) of 4 × 4 matrices over the integers is proved. This solves partially an open question raised by Hong in 2002.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第3期485-487,共3页
Journal of Sichuan University(Natural Science Edition)
基金
教育部"新世纪优秀人才支持计划"(NCET-06-0785)