期刊文献+

使得幂GCD阵(S^e)整除幂LCM矩阵[S^e]的四元gcd封闭集S的一个刻画(英文) 被引量:1

A characterization of the gcd-closed set S with |S|=4 such that(S^e) divides |S^e|
原文传递
导出
摘要 Hong在2002年证明了如下结果:若S为gcd封闭集且|S|3,则在|S|阶整数矩阵环M|S|(Z)中,GCD矩阵(S)整除LCM矩阵[S].设e 1为给定的整数.在本文中,我们给出了关于四元gcd封闭集S的充分必要条件,使得在环M4(Z)中,定义在S上的e次幂GCD矩阵(Se)整除e次幂LCM矩阵[Se].这部分解决了Hong在2002年提出的一个公开问题. In 2002, Hong showed that for any gcd-closed set S with | S |≤3, the GCD matrix (S) on S divides the LCM matrix [S] on S in the ring M|s| (Z) of | s| ×| s| matrices over the integers. Let e≥ be an arbitrary given integer. In this paper, a necessary and sufficient conditions on the ged closed set S with | S | = 4 such that the power GCD matrix (S^e)on S divides the power LCM matrix [ S^e ] on S in the ring M4 (Z) of 4 × 4 matrices over the integers is proved. This solves partially an open question raised by Hong in 2002.
作者 赵建容
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期485-487,共3页 Journal of Sichuan University(Natural Science Edition)
基金 教育部"新世纪优秀人才支持计划"(NCET-06-0785)
关键词 幂GCD矩阵 幂LCM矩阵 gcd封闭集 整除性 power GCD matrix, power LCM matrix, gcd-closed set, divisibility
  • 相关文献

参考文献13

  • 1Apostol T M. Arithemetical properties of generalized Ramanujan Sums[J]. Pacific J Math, 1972, 41: 281.
  • 2Bourque K, Ligh S. Matrices associated with classes of arithmetical functions[J]. J Number Theory, 1993, 45 : 367.
  • 3Hong S. On the Bourque-Ligh conjecture of least common multiple matrices[J]. J Algebra, 1999, 218: 216.
  • 4Hong S. God-closed sets and determinants of matrices associated with arithmetical functions[J]. Acta Arith, 2002, 101: 321.
  • 5Hong S. Nonsingularity of least common multiple matrices on ged-closed sets[J]. J Number Theory, 2005, 113: 1.
  • 6Hong S, Enoch Lee K S. Asymptotic behavior of eigen-values of reciprocal power LCM matrices[J]. Glasgow Math J, 2002, 50: 163.
  • 7Hong S, Loewy R. Asymptotic behavior of eigenvalues of greatest common divisor matrices[J]. Glasgow Math J, 2004, 46: 551.
  • 8McCarthy P J. A generalization of Smith's determinant [J]. Canad Math Bull, 1986, 29: 109.
  • 9Smith H J. On the value of a certain arithmetical determinant[J]. Proc London Math Soc, 1875-1876, 7: 208.
  • 10Bourque K, Lighn S. On GCD and LCM matrices[J]. Linear Algebra Appl, 1992, 174: 65.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部