期刊文献+

基于AdaBoost和LLE的视频人脸特征提取研究 被引量:4

AdaBoost and LLE for face feature extraction techniques in video sequence
原文传递
导出
摘要 特征提取是生物特征识别的关键环节.本文提出了一种基于AdaBoost和LLE的视频人脸特征提取方法.其大致思路是用VFW技术对视频图像进行采集、接着将AdaBoost算法对采集的图像进行人脸检测,最后应用LLE算法对检测到的人脸图像进行降维并提取出特征.项目实践表明,该方法具有便捷性、实用性和有效性. Feature extraction is a key component of biometrics. This paper puts forward a scheme based on AdaBoost and LLE from the video sequences. The basic idea for the schemes is that frame images is captured from video sequence by FVW, face detection for that images is carried out according to AdaBoost algorithm, and Dimensionality Reduction and feature extraction for Located face image is implemented by LLE. Experimental results indicate that this scheme presented in this paper is convenient, practicable and available.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期512-516,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(60272095) 教育部博士点基金(20020610013)
关键词 视频序列 视频采集 ADABOOST LLE 特征提取 人脸库 video sequence, video capturing, adaboost, LLE, feature extraction, face feature base
  • 相关文献

参考文献8

  • 1Microsoft Corporation. MSDN Library Visual Studio 6. 0[CP]. USA: Microsft Corporation, 2002.
  • 2Freund Y, Schapire R E. A decision-theoretic generalization of online learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997(1): 55.
  • 3Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: [s. n. ], 2001.
  • 4Viola P, Jones M. Robust real time object detection [C]//2nd International Workshop on Statistical and Computational Theories of Vision-Modeling, Learning, Computing, and Sampling. Vancouver, Canada: [s. n. ], 2001.
  • 5Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection[C]. Processing. of the 2002 International Conference on Image Processing (ICIP), USA:[s.n. ], 2002.
  • 6詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 7吴俊强,周激流,何坤.基于LLE的彩色图象人脸检测[J].四川大学学报(自然科学版),2006,43(4):796-800. 被引量:8
  • 8何丹,周激流,何坤.基于SMA方法的人脸校验[J].四川大学学报(自然科学版),2006,43(2):341-344. 被引量:2

二级参考文献39

  • 1He Kun,Zhou Ji-liu,Song Yu,et al.Multi-resolution eye location from image 2004 7th International Conference on Signal Processing Proceedings[C].Bejing:ICSP,2004:903.
  • 2Viola P,Jones M.Rapid object detection using a boasted cascade of simple features[J].Computer vision and pattern recognition,2001,1:511.
  • 3Ritsch G,Onoda T,Muller K R.Soft margins for AdaBoost[J].Machine Learning,2001,42(3):287.
  • 4Murase H,Nayar S K.Visual leaming and recognition of 3D objects from appearance[J].International Journal of Computer Ksion,1995,14(1):5.
  • 5Schapire R,Freund Y,Bartlen P L,et al.Boosting the margin:A new explanation for the effectiveness of voting methods[J].Annols of Staristics,1998,26(5):1651.
  • 6Baker S,Nayar S,Murase H.Parametric feature detection[J].International Journal of Computer Vision,1998,27(1):27.
  • 7Ng J,Shaogang Gong.Multi-view face detection and pose estimation using a composite support vector machine across the view sphere Recognition[J].Analysis,and Tracking of Faces and Gestures in Real-Time Systems,1999,1:14.
  • 8Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural comput,1998,10 : 1299.
  • 9Belhumeur P, Hsepanha J, Kriegrnan D. Eigenfaces vs fisherfaces: recognition using class specific linear projection[J]. IEEE Trans. on pattern analysis and machine intelligence, 1997,18(7) : 711.
  • 10Hjelmas E, Low B. Face detection: Survey[J]. Computer vision and image understanding, 2002,83(3):236.

共引文献21

同被引文献23

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部