摘要
研究了如下奇异二阶四点边值问题u″(t)+h(t)f(t,u(t))=0,0<t<1,u(0)=αu(ξ),u(1)=βu(η),其中0<ξ<η<1,0α,β<1,f(t,u)在u=0点具有奇性,h(t)在t=0,1点具有奇性.应用Green函数的性质和存在性原则,得到了正解的存在性.
In this paper, the singular second order four-point boundary value problem
{u^n(t)+h(t)f(t,u(t))=0,0〈t〈1,
u(0)=au(ξ),u(1)=βu(η)
is studied, where 0〈ξ〈η〈1,0≤α,β〈1,f(t,u) may be singular at u = 0,h(t) may be singular at t = 0,1. By the use of the property of the corresponding Green's function and existence principle, existence of positive solution are acquired.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第13期178-184,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金资助项目(10671012)
教育部博士点专项基金(20050007011)
关键词
奇异
四点边值问题
正解
GREEN函数
Singular
Four-point boundary value problem
Positive solution
Green's function