期刊文献+

奇异二阶四点边值问题的正解

Singular Second Order Four-point Boundary Value Problem
原文传递
导出
摘要 研究了如下奇异二阶四点边值问题u″(t)+h(t)f(t,u(t))=0,0<t<1,u(0)=αu(ξ),u(1)=βu(η),其中0<ξ<η<1,0α,β<1,f(t,u)在u=0点具有奇性,h(t)在t=0,1点具有奇性.应用Green函数的性质和存在性原则,得到了正解的存在性. In this paper, the singular second order four-point boundary value problem {u^n(t)+h(t)f(t,u(t))=0,0〈t〈1, u(0)=au(ξ),u(1)=βu(η) is studied, where 0〈ξ〈η〈1,0≤α,β〈1,f(t,u) may be singular at u = 0,h(t) may be singular at t = 0,1. By the use of the property of the corresponding Green's function and existence principle, existence of positive solution are acquired.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第13期178-184,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(10671012) 教育部博士点专项基金(20050007011)
关键词 奇异 四点边值问题 正解 GREEN函数 Singular Four-point boundary value problem Positive solution Green's function
  • 相关文献

参考文献7

  • 1Il'in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987,23:803-810.
  • 2Il'in V A, Moiseev E I. Nonlocal boundary value problem of the second kind for a SturmoLiouville operator[J], Differential Equations. 1987.23 : 979-987.
  • 3Singh P. A second-order singular three-Point boundary value problem[J]. Appl Math Lett,2004,17:969-976.
  • 4Bai Z B, Ge W G, Wang Y F. Multiplicity results for some second-order four-point boundary-value problems[J]. Nonlinear Anal, 2005.60 : 491-500.
  • 5Feng W, Webb J R L. Solvability of a three-point nonlinear boundary value problems at resonance[J]. Nonlinear Anal, 1997,30:3227-3238.
  • 6Gupta C P, Trofimchuk S. Existence of a solution to a three-point boundary value problem and the spectral radius of a related linear operator[J]. Nonlinear Anal, 1998,34 : 498-507.
  • 7Ma D X, Han J, Chen X. Positive solution of three-point boundary value problem for the one-dimensional p- Laplacian with singularities[J]. J Math Anal Appl,2006,324:118-133.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部