期刊文献+

抽象空间中无穷时滞微分方程概自守解的存在性

Existence of Almost Automorphic Solutions of Differential Equations with Infinite Delay in Abstract Space
原文传递
导出
摘要 研究抽象空间中无穷时滞微分方程概自守解的存在性,证明了在正实轴上存在有界解蕴含存在概自守解,并给出了结论在L otka-V o lterra型方程中的应用.我们的结果推广了经典的关于非齐次线性概周期微分方程概周期解存在性的结论. We study the existence of almost automorphic solutions of differential equations with infinite delay in abstract space. We prove that the existence of a bounded solution on R^+ implies the existence of an almost automorhic solution and give an application to Lotka-Volterra type equation. Our result extends the classical result on the existence of almost periodic solutions for inhomegeneous linear almost periodic differential equations.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第13期200-205,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(10471155)
关键词 Hille-Yosida条件 无穷时滞 记忆衰退空间 概自守解 Hille-Yosida condition infinite delay fading memory space almost automorphic solution
  • 相关文献

参考文献7

  • 1Hale J K, Kato J. Phase space for retarded equations with infinite delay[J]. Funkcial Ekvac,1978,21:11-41.
  • 2Bochner S. Continuous mappings of.almost automorphic and almost automorphic functions[J]. Proc Natl Sci USA, 1964,52 : 907-910.
  • 3Ezzinbi K, N'Guerekata G M. Almost automorphic solutions for some partial functional differential equations[J]. J Math Anal Appl,2007,328:344-358.
  • 4Adimy M, Ezzinbi K, Ouhinou A. Variation of constants formula and almost periodic solutions for some partial functional differential equations with infinite delay[J]. J Math Anal Appl.2006,317:668-689.
  • 5Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay[M]. Lecture Notes in Mathematics, Springer-Verlag, 1991,1473.
  • 6Fink A. Almost Periodic Differential Equations[M]. Lectures Notes in Math,1974,377.
  • 7Ezzinbi K. Fatajou S, N'Guerekata G M. Masser type theorem for the existence of C'-almost periodic solutions for partial functional differential equations with infinite delay[J ]. Nonlinear Anal, 2007,48, doi: 10. 1016/j. na. 2007. 06. 041.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部