期刊文献+

以电脑三维骨骼肌肉模型作生物力学分析在运动科学及医学上的意义与应用(英文) 被引量:11

Graphic musculoskeletal model for biomechanical analyses and animation in sport sciences and medicine
下载PDF
导出
摘要 将生理学、工程分析和计算机三维图像技术结合起来打开了创造"虚拟人"的大门。本文报道了一种具有广泛应用基础且功能齐全的人类肌肉骨骼系统的生理生物力学仿真技术。该仿真技术从结构水平、静态和动态模型的可视化结果上,并综合利用生物力学分析及图形化建模的专业知识来研究骨骼关节和软组织的力学性能,可与人体组织符合的模型包括假体植入物、内固定系统、功能康复锻炼装置,以及一个功能强大的计算平台联合在一起形成一个可在不同边界及加载条件下作静态、动态、动力学、应力及应变分析的应用软件系统及数据库—简称为VIMS(Virtual Interactive Musculoskeletal System虚拟互动的肌肉骨骼系统)。在该数据库中,包含长骨的几何形状、尺寸、骨及软组织的材料性能以及骨骼关节肌肉系统的功能活动及受力状况的丰富资料。这些资料与数据可以随时修改、更新和扩展。该应用软件也可让众多的终端用者进行生物力学分析合作与交流。在一个虚拟实验室的环境下,这个模拟软件可作下列具体的应用:1)骨关节系统动力分析;2)肩关节在运动时的负力情形和接触压力的分布;3)日常活动中髋关节接触面及压力的分布;4)负载步态下踝关节接触压力分布与韧带张力负荷状况;5)踝关节损伤和治疗措施的模拟;6)膝关节连续被动运动和计算机辅助增力练习和恢复;以上应用的实例足以证明这仿真技术与数据库在运动科学及医学上独特的效应。这一个精而广的生物力学分析和叮视化的技术可以促进基础研究、改良运动器材精化运动员筛选/训练、增强损伤预防和康复。它对运动医学和科学将会产生不可预料影响。这门先进的技术与其发展的观念将会造福于奥运级运动员和自我强身的一般民众。 The ability to combine physiology and engineering analyses with computer graphics has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants, fracture fixation devices, rehab and exercise equipment and a robust computational platform for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated in the utility software system and the database, the VIMS (Virtual Interactive Musculoskeletal System). In the database, long bone geometry, dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is available for the end-users to perform biomechanical analyses interactively. Examples using the graphic models and the computational algorithms in a virtual laboratory environment for: 1) biomechanical analysis of skeletal kinematics; 2) shoulder joint force and contact pressure distribution in overhead activities; 3) hip joint contact pressure distribution in activities of daily living; 4) ankle joint contact stress and ligament loading during gait; 5) ankle injury and therapeutic management simulation; 6) knee continued passive motion and computer-aided rehabilitation; are used to demonstrate the utility of the unique database and the biomechanical simulation technology. This integrated system will impact on sport sciences and medicine through basic research, athlete screening/training, injury prevention and rehabilitation to benefit both the elite and recreational athletes.
作者 赵以甦
机构地区 梅奥医学中心
出处 《医用生物力学》 EI CAS CSCD 2008年第3期177-192,共16页 Journal of Medical Biomechanics
关键词 以图形为基础的模型建立 生物力学分析 仿真 动画及可视化图像 肌肉骨骼系统 运动科学和医学 Graphic-based modeling Biomechanical analyses Simulation Animation & visualization Musculoskeletal system Sports sciences & medicine
  • 相关文献

参考文献58

  • 1Chao EYS, Rim K, Smidt GL, Johnston RC. The application of 4 × 4 matrix method to the correction of the measurement of hip joint rotation[J]. J Biomech,1970, 3: 459-471.
  • 2Chao EYS, Rim K. Application of optimization principles in determining the applied moments in human leg joints during gait[J], J Biomech,1973, 6: 497-510.
  • 3Chao EY. Justification of triaxial goniometer for the measu rement of joint rotation[J]. J Biomech, 1980, 13:989-1006.
  • 4Chao EYS, Lynch JD, Vanderploeg MJ. Simulation and animation of musculoskeletal joint system[J]. J Biomech Eng, 1993, 115: 562-568.
  • 5Kaufman K, An K, Litchy W, et al. Physiological prediction of muscle forces - Ⅰ. Theoretical formulation[J]. Neuroscience, 1991,40: 781-790.
  • 6Crowinshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion[J]. J Biomech ,1978,11 : 75-85.
  • 7Kaufman KR, An KN, Litchy W J, Morrey et al. Dynamic joint forces during knee isokinetic exercise[J]. Am J Sports Med, 1991, 19: 306-316.
  • 8Li G, Kaufman KR, Chao EYS, et al. Prediction of antagonistic muscle forces using inverse dynamics optimization during flexion/extension of the knee[J]. J Biomech Eng,1999,121: 316-322
  • 9Buford WL, Myers LM, Hollister AM. A modeling and simulation system for the human hand[J]. J Clin Engin ,1990,15: 445-451.
  • 10Buford WL, Andersen CR, Elder KS, et al. Modeling and experimental verification of muscle-tendon paths for interactive 3D computer simulation of extremities[C]. 2001 Bioengineering Conference, 233-234, BED-Vol. 50, July, 2001.

同被引文献131

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部