期刊文献+

Leucobacter对Cr(Ⅵ)的还原及其还原产物的成分分析 被引量:3

Bio-reduction of Cr(Ⅵ) by Leucobacter and element analysis of reduction products
下载PDF
导出
摘要 考察Leucobacter spp.Ch1的细胞在生长状态和休眠状态对六价铬的还原;运用SEM和TEM对还原前后Leucobacter的形态进行观察,并利用EDAX和EPR分析还原产物的成分。研究结果表明:在好氧条件下,生长的细菌还原250 mg/L Cr(Ⅵ)需5 h,细胞悬液需45 min;在厌氧条件下,休眠细胞还原能力较强,而接种于培养基的细菌无还原能力;还原反应的产物主要附着在细菌的末端,表明反应发生于细胞表面;反应产物中Cr的含量为28.2%,表明三价铬以Cr(OH)3沉淀的形式存在。 Chromate reduction ability ofLeucobacter spp. Chl was studied with its growing cells and resting cells. SEM and TEM were used to observe the shape of bacterial cell before and after Cr(Ⅵ) reduction. EDAX and EPR were employed to determine the composition of the reduction products. The results show that it takes 5 h to reduce 250 mg/L Cr(Ⅵ) with growing cells and 45 min with resting cells under aerobic conditions. Effective reduction ability is also found in resting cells rather than in growing cells under anaerobic conditions. Reaction product adheres to the terminal of bacterial cells, which indicates that chromate reduction takes place on the surface of Chl cells. Reduction product contains 28.2% of Cr and it is determined as trivalent chromium in the form of Cr(OH)3 precipitate.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期443-447,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(20477059) 国家高技术研究发展计划(863)项目(2006AA06Z374)
关键词 Leucobacter 六价铬 还原 产物 Leucobacter hexavalent chromium reduction product
  • 相关文献

参考文献14

  • 1Petrilli F L, Flora S D. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium[J]. Applied and Environmental Microbiology, 1977, 33(4): 805-809.
  • 2Rai D, Sass B M, Moore D A. Lung cancer among workers in chromium chemical production[J]. Inorganic Chemistry, 1987, 26: 345-349.
  • 3Romanenko V I, Korenkov V N. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions[J]. Microbiologica, 1977, 46: 414-417.
  • 4Asatiani N V, Abuladze M K, Kartvelishvili T M, et al. Effect of Chromium(Ⅵ) Action on Arthrobacter oxydans[J]. Current Microbiology, 2004, 49(5): 321-326.
  • 5LIU Yun-guo, XU Wei-hua, ZENG Guang-ming, et al. Cr(Ⅵ)reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41 (9): 1981-1986.
  • 6Wang P C, Tsukasa M, Kohya K, et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Applied and Environmental Microbiology, 1989, 55: 1665-1669.
  • 7Wang Y T, Shen H. Modeling Cr(Ⅵ) reduction by pure bacterial cultures[J]. Water Research, 1997, 31: 727-732.
  • 8Thacker U, Patrikh R, Shouche Y, et al. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr( Ⅵ ) contaminated sites [J]. Bioresource Technology, 2007, 98(8): 1541-1547.
  • 9Viamajala S, Smith W A, San R K, et al. Isolation and characterization of Cr(Ⅵ) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction[J]. Bioresource Technology, 2007, 98(3): 612-622.
  • 10Jeyasingh J, Philip L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions[J]. Journal of Hazardous Materials, 2005, 118(1/3): 113-120.

同被引文献33

  • 1徐天生,欧杰,马晨晨.微生物还原Cr(Ⅵ)的机理研究进展[J].环境工程,2015,33(1):32-36. 被引量:9
  • 2常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科学,2007,33(1):42-44. 被引量:11
  • 3孟庆恒,傅珊,张海江,彭博.微生物在铬污染土壤中的分布及铬累积菌株的初步筛选[J].农业环境科学学报,2007,26(2):472-475. 被引量:9
  • 4JEYASINGH J, PHILIP L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions[J]. Journal of Hazardous Materials, 2005, B118(1/3): 113-120.
  • 5SHAILI S, INDU S T. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm[J]. Soil Biology & Biochemistry, 2006, 38(7): 1904-1911.
  • 6SHEN H, WANG Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456[J]. Applied and Environmental Microbiology, 1993, 59(11):3771-3776.
  • 7ACKERLEY D F, GONZALEZ C F, KEYHAN M, BLAKE R, MATIN A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environ Microbiol, 2004, 6(8): 851-858.
  • 8OHTAKE H, FUJII E, TODA K. Reduction of toxic chromate in an industrial effluent by use of a chromate reducing strain of Enterobacter cloacae[J]. Environment Science Technology, 1990, 11(7): 663-668.
  • 9PHILIP L, IYENGAR L, VENKOBACHAR C. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils[J]. Journal of Environment Engineering, 1998, 124(12): 1165-1170.
  • 10GUHA H, JAYACHANDRAN K, MAURRASSE F. Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions[J]. Environmental Pollution, 2001, 115(2): 209-218.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部