期刊文献+

吸附式制冷系统运行参数动态特性 被引量:4

Dynamic operating characteristics for adsorption refrigeration
下载PDF
导出
摘要 针对燃料电池汽车余热驱动的吸附式制冷循环过程吸、脱附特性,采用动态的分析方法,对吸附式制冷系统的主要部件吸附床在不同阶段(等容加热、等压解吸、等容冷却、等压吸附)的工作过程建立动态方程,同时对制冷系统的蒸发器及冷凝器建立相应的动态模型。利用数值方法对数学模型进行求解,分析吸附速率、吸附床温度、冷凝温度、蒸发温度、制冷功率等参数随时间的动态变化规律。研究结果表明:吸附速率在吸附过程进行到5 min时达到峰值,吸附床温度达到350 K后其升温速率开始减慢,吸附床温度降到315 K后的降温速率开始减慢,冷凝温度在解吸阶段进行到8 min时存在1个峰值,蒸发温度的变化趋势与制冷功率的变化趋势相反。 Aiming at adsorption refrigeration cycle driven by waste heat of fuel cell electrical vehicle, applied method of dynamic analysis, dynamical equations of state for adsorbent bed were built up for different phases (heating for specific volume to fix, desorbing for pressure to fix, cooling for specific volume to fix and adsorbing for pressure to fix), dynamic equations of state for evaporator and condenser were also built up, Mathematical models were solved by numerical method. The relationship between time and several parameters (adsorption rate, temperature of adsorbent bed, condensing temperature, evaporating temperature and cooling power) was discussed. The results show that adsorption rate at adsorption process reaches a peak value at 5 min, and heating rate starts reduce slowly when the temperature of adsorbent bed attains 350 K, and cooling rate starts to reduce slowly when the temperature of adsorbent bed attains 315 K. The condensing temperature in the desorption process reaches a peak value at 8 min, and the variation trend of the evaporating temperature and cooling power is reverse.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期459-463,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50676110) 湖南省自然科学基金资助项目(04JJ3086)
关键词 吸附式制冷 动态运行特性 燃料电池汽车 adsorption refrigeration dynamic operating characteristics fuel cell electrical vehicle
  • 相关文献

参考文献13

  • 1WANG Ru-zhu, WU Jing-Yi. Performance researches and improvements on heat regenerative adsorption refrigerator and heat pump [J]. Energy Conversion and Management, 2001, 42(2) 233-249.
  • 2Halder G N, Sarkar S C. Scope of carbon dioxide as a natural refrigerant for replacements of CFCs[J]. Journal of Energy in Southern Africa, 2001, 12(3): 408-411.
  • 3杨培志,陈焕新.吸附式制冷循环热力学及性能[J].中南大学学报(自然科学版),2007,38(3):461-467. 被引量:12
  • 4Douss N, Sun L M, Meunier F. Predictive model and experimental results for a two-adsorber solid adsorption heat pump[J]. Industrial & Engineering Chemistry Research, 1988, 27(2): 310-316.
  • 5Hajji A, Worek W M. Simulation of a regenerative, closed-cycle adsorption cooling/heating system[J]. Energy, 1991, 16(3): 643 -654.
  • 6陈江平,阙雄才,陈芝久,王宝官.活性炭-乙醇吸附式制冷系统的实验研究[J].太阳能学报,1996,17(3):216-219. 被引量:11
  • 7El-Sharkawy I I, Kuwahara K, Saha B B, et al. Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application[J]. Applied Thermal Engineering, 2006, 26(8): 859-865.
  • 8王文,王如竹.非平衡吸附与固体吸附制冷循环特性研究[J].工程热物理学报,2001,22(6):674-676. 被引量:6
  • 9Restuccia G Freni A, Vasta S, et al. Selective water sorbent for solid sorption chiller: Experimental results and modeling[J]. International Journal of Refrigeration, 2004, 27(3): 284-293.
  • 10Kato Y, Sasaki Y, Yoshizawa Y. Thermal performance measurement of a packed bed reactor of a magnesium oxide/water chemical heat pump[J]. Journal of Chemical Engineering of Japan, 2003, 36(7): 833-839.

二级参考文献24

  • 1陈焕新,谭显光.燃料电池汽车余热利用的可行性探讨[J].建筑热能通风空调,2004,23(5):81-84. 被引量:9
  • 2[1]Parten,M.,Maxwell,T..Development of a PEM fuel cell vehicle.IEEE Vehicular Technology Conference,2001,4 (54):2225-2228
  • 3[2]Betts,Daniel A.,Roan,Vernon P.,Fletcher,James H..Discussion and analysis of flue gas utilization in a phosphoric acid fuel cell engine during idle operation.Journal of Fuel Cell Science and Technology,2006,3(1):26-32
  • 4[3]Hauer,K.H.,Moore,R.M..Fuel Cell Vehicle Simulation -Part 2:Methodology and Structure of a New Fuel Cell Simulation Tool.Fuel Cells,2003,3(3):95-104
  • 5[4]Williamson,Sheldon S.,Lukic,Srdjan M.,Emadi,Ali..Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling.IEEE Transactions on Power Electronics,2006,21(3):730-740
  • 6[5]SHEN,Yuzhuo,ZHANG,Jianfei,ZHANG,Yicheng.Double cycle feed forward converter used in fuel cell electrical vehicle.Tongji Daxue Xuebao,2004,32(1):113-117
  • 7王宝官,工程热物理学报,1994年,15卷,4期,1页
  • 8冯毅,高校化学工程学报,1993年,4卷,1期
  • 9严爱珍,制冷学报,1982年,4期,24页
  • 10汪前彬,硕士学位论文,1997年

共引文献26

同被引文献41

  • 1施灵.多台冷水机组空调系统的优化控制[J].暖通空调,2005,35(5):79-81. 被引量:29
  • 2简毅文,江亿.窗墙比对住宅供暖空调总能耗的影响[J].暖通空调,2006,36(6):1-5. 被引量:69
  • 3龙恩深,付祥钊.窗墙比对居住建筑的冷热耗量指标及节能率的影响[J].暖通空调,2007,37(2):46-50. 被引量:23
  • 4WU J Y, TENG Y. Research on optimum operation of heat regenerative adsorption refrigeration systems [C]//Proc of Absorption Heat Pump Conf. Montreal, Canada, 1996:555-562.
  • 5SAKODA A, SUZUKI M. Simultaneous transport of heat and adsorbate in closed type adsorption cooling system utilizing solar heat[J].J of Solar Energy Eng, 1986, 108(3) :239-245.
  • 6INCROPERA F P,DEWITT D P. Fundamentals of heat transfer[M]. New York:John Wiley & Sons Inc. , 1981.
  • 7DOUSS N, SUN L M, MEUNIER F. Predictive model and experimental results for a two-adsorber solid adsorption heat pump[J]. Ind & Eng Chem Res, 1988,27(2):310-316.
  • 8Vrachopoulos M G; Filios A E, Fatsis A, et al. Determination of the thermal and cooling needs of the broader region of Athens[J]. Renewable Energy, 2008, 33(12): 2615-2622.
  • 9Aktacir M A, Buyukalaca O, Bulut H, et al. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments[J]. Energy Conversion & Management. 2008, 49(6): 1766-1773.
  • 10Corgnati S P, Perino M, Fracastoro G V. Experimental and numerical analysis of air and radiant cooling systems in offices[J]. Building and Environment, 2009, 44(4): 801-806.

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部