期刊文献+

求解任务分配问题的一种离散微粒群算法 被引量:5

A discrete particle swarm optimization algorithm for task assignment problem
下载PDF
导出
摘要 以交通运输领域中的装卸货任务分配问题为例对任务分配问题进行数学描述,提出一种用于求解该类问题的离散微粒群算法(DPSO)。在分析基本微粒群算法的收敛性能和任务分配问题解分布情况的基础上,采用惯性权值非线性下降策略更新微粒速度,以提高算法的收敛性,并且引入一个反正切函数对基本微粒群算法的位置公式进行进一步处理,以保证解的可行性。提出的DPSO用于求解某企业铁路货运站的装卸任务,在相同实验条件下,求解同一任务分配问题,提出的改进DPSO寻优率为76%,明显高于寻优率仅为40%和4%的其他2种DPSO算法;不同规模问题的求解试验中,综合比较寻优结果和计算时间,所提DPSO算法优于枚举法和遗传算法,且计算简便,可推广用于其他任务分配问题与组合优化问题。 Mathematical description of task assignment problem was given by describing the pickup and delivery task assignment problem in transportation, and a discrete particle swarm optimization algorithm (DPSO) for solving the above problem was proposed. Based on the analysis of convergence performance of standard PSO and distribution of solutions of the task assignment problem, the strategy of nonlinearly decreasing inertia weight was adopted in the velocity update formula to improve the convergence of the algorithm, and an arctangent function was introduced to further adjust the position formula to ensure the feasibility of solutions. The proposed DPSO was applied to the pickup and delivery task assignment in a railway freight station. Solving the same task assignment problem in the same experimental condition, the successful rate of the proposed DPSO is 76%, and is higher than those of the other two DPSO, which are only 40% and 4%. In the experiment of solving different scale problems, by comparing the optimization results and computing time, the proposed DPSO is superior to the enumeration method and genetic algorithm. The proposed algorithm is simple and feasible, and can be applied to solving other task assignment problems and combinational optimization problems.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期571-576,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60574030) 湖南省自然科学基金资助项目(06FD026)
关键词 微粒群算法 任务分配 惯性权值 离散问题 particle swarm optimization algorithm task assignment inertia weight discrete problem
  • 相关文献

参考文献15

  • 1Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NP-completeness[M]. New York: Freeman, 1979.
  • 2Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26:363-371.
  • 3谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995:1942-1948.
  • 5Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of 6th International Symposium on Micromaehine and Human Science. Piscataway: IEEE Service Center, 1995: 39-43.
  • 6Eberhart R C, Shi Y. Particle swarm optimization: Developments,applications and resources[C]//Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 2001: 81-86.
  • 7Ourique C O, Biscaia E C Jr, Pinto J C. The use of particle swarm optimization for dynamical analysis in chemical processes[J]. Computers and Chemical Engineering, 2002, 26(12): 1783-1793.
  • 8ZHOU Jia-lin, DUAN Zheng-cheng, LI Yong, et al. PSO-based neural network optimization and its utilization in a boring machine[J]. Journal of Materials Processing Technology, 2006, 178(1/3): 19-23.
  • 9Fan S K S, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained optimization[J]. European Journal of Operational Research, 2007, 181(2): 527-548.
  • 10李婷,赖旭芝,吴敏.基于双种群粒子群优化新算法的最优潮流求解[J].中南大学学报(自然科学版),2007,38(1):133-137. 被引量:13

二级参考文献76

  • 1许国平,叶效锋,鲍立威.基于模拟退火遗传算法的车辆路径问题研究[J].工业控制计算机,2004,17(6):49-50. 被引量:26
  • 2肖健梅,李军军,王锡淮.改进微粒群优化算法求解旅行商问题[J].计算机工程与应用,2004,40(35):50-52. 被引量:29
  • 3钟一文,杨建刚.异构计算系统中独立任务调度的混合遗传算法[J].北京航空航天大学学报,2004,30(11):1080-1083. 被引量:9
  • 4李枚毅,蔡自兴.基于粒群行为与克隆的移动机器人进化路径规划[J].中南大学学报(自然科学版),2005,36(5):739-744. 被引量:4
  • 5[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 6[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 7[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 8[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 9[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 10[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.

共引文献676

同被引文献49

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部