期刊文献+

从S^2到CP^n的共形极小浸入(英文)

Conformal minimal immersions of S^2 in CP^n
下载PDF
导出
摘要 通过李群、活动标架,以及调和映射来研究从S2到CPn的共形极小浸入.首先,用一种新方法证明Bolton的一个定理,从S2到CPn的全纯曲线在差一个刚动的情况下由度量唯一决定;其次,利用从S2到CPn的共形极小浸入来构造从S2到G2,n+1的共形极小浸入;最后,如果φ是从S2到CPn的全实共形极小浸入,且φ是常曲率的,则可以找出具体的等距变换g,使得gφ包含在RPnCPn中. In this paper, conformal minimal 2-spheres immersed in a complex projective space are studied by applying Lie theory, moving frame and harmonic sequence. First, we use a different way from Bolton to prove that a holomorphic curve from S^2 into CPn is uniquely determined by its induced metric, up to a rigid motion. Secondly, via conformal minimal immersions of constant curvature from S^2 into CPn , we can construct new minimal immersions of S^2 in G2,n+1, n + 1 with constant curvature. Finally, if φ is a totally real conformal minimal 2-sphere of constant curvature immersed in a complex projective space, then we can find the explicit isometry transform g such that gφ lies in RP^n comprise CP^n.
出处 《中国科学院研究生院学报》 CAS CSCD 2008年第4期452-459,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 supported bythe National Natural Science Foundation of China(10531090) the Knowledge Innovation Programof the Chinese Academy of Sciences and SRFfor ROCS,SEM
关键词 全纯曲线 极小浸入 调和映射 GAUSS曲率 holomorphic curve minimal immersion harmonic sequence Gauss curvature
  • 相关文献

参考文献7

  • 1Chern SS, Wolfson JG. Minimal surfaces by moving frames. Amer J Math, 1983, 105:59 - 83
  • 2Calabi E. Isometric embedding of complex manifolds. Ann Math, 1953, 58:1 - 23
  • 3Griffiths P. On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math, 1974, J41
  • 4Bohon J, Jensen GR, Rigoli Mand L, et al. On conformal minimal immersions of S2 into CP^n . Math Ann, 1988, 279:599 - 620
  • 5Uhlenbeck K. Harmonic maps into Lie groups (classical solutions of the chiral model). J DiffGeom, 1989, 30:1 - 50
  • 6Jiao XX, Peng JG. Pseudo-holomorphic curves in complex Grassmarm manifolds. Trans Amer Math Soc, 2003, 355(9) : 3715 - 3726
  • 7Chern SS, Woffson JG. Harmonic maps of the two-spheres in a complex Grassmann manifold. Ann Math, 1987, 125:301 - 335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部