摘要
通过李群、活动标架,以及调和映射来研究从S2到CPn的共形极小浸入.首先,用一种新方法证明Bolton的一个定理,从S2到CPn的全纯曲线在差一个刚动的情况下由度量唯一决定;其次,利用从S2到CPn的共形极小浸入来构造从S2到G2,n+1的共形极小浸入;最后,如果φ是从S2到CPn的全实共形极小浸入,且φ是常曲率的,则可以找出具体的等距变换g,使得gφ包含在RPnCPn中.
In this paper, conformal minimal 2-spheres immersed in a complex projective space are studied by applying Lie theory, moving frame and harmonic sequence. First, we use a different way from Bolton to prove that a holomorphic curve from S^2 into CPn is uniquely determined by its induced metric, up to a rigid motion. Secondly, via conformal minimal immersions of constant curvature from S^2 into CPn , we can construct new minimal immersions of S^2 in G2,n+1, n + 1 with constant curvature. Finally, if φ is a totally real conformal minimal 2-sphere of constant curvature immersed in a complex projective space, then we can find the explicit isometry transform g such that gφ lies in RP^n comprise CP^n.
出处
《中国科学院研究生院学报》
CAS
CSCD
2008年第4期452-459,共8页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
supported bythe National Natural Science Foundation of China(10531090)
the Knowledge Innovation Programof the Chinese Academy of Sciences and SRFfor ROCS,SEM
关键词
全纯曲线
极小浸入
调和映射
GAUSS曲率
holomorphic curve
minimal immersion
harmonic sequence
Gauss curvature