期刊文献+

基于自适应聚合的立体视觉合作算法

Adaptive Aggregation Based Cooperative Stereo Vision
下载PDF
导出
摘要 提出了一种恢复高质量稠密视差图的立体视觉合作算法.该算法采用基于形态学相似性的自适应加权方法,迭代地进行局部邻域的自适应聚合和抑制放大,实现高效率和高质量稠密视差图计算.将该算法推广到三目摄像机立体匹配系统中,通过重建摄像机坐标系实现图像校正,并根据连续性假设和唯一性假设,建立视差空间中的支持关系和三目摄像机之间的抑制关系.实验结果表明,三目立体合作算法能够得到精确的场景视差映射,并可以实现多基线方向的遮挡检测.该算法特别适用于由多个廉价摄像机组成的立体视觉系统,在几乎不增加软件和硬件资源的情况下,就可以得到高质量的稠密视差图. This paper proposes a stereo vision cooperative algorithm for high quality dense disparity mapping. This algorithm iteratively performs the local adaptive aggregation and inhibitive magnification based on the morphologic similarity with adaptive weight, and generates high quality dense disparity map effectively. This paper also extends the cooperative algorithm to trinocular stereo vision system. By rebuilding the camera coordinate system, the trinocular images are rectified, and the support area and trinocular inhibition area are established in disparity space based on the continuity and uniqueness constrains. Experimental results show that the trinocular stereo vision cooperative algorithm can generate accurate real dense disparity maps, and the occlusions in multiple baseline directions can also be detected. This algorithm is especially suitable for stereo vision system with multiple cheap camera to realize high quality dense disparity mapping without more hardware and software.
出处 《软件学报》 EI CSCD 北大核心 2008年第7期1674-1682,共9页 Journal of Software
基金 the National Natural Science Foundation of China under Grant No.60675021(国家自然科学基金) the National High-Tech Research and Development Plan of China under Grant No.2002AA113020(国家高技术研究发展计划(863))
关键词 立体视觉 三目摄像机 合作算法 自适应聚合 stereo vision trinocular cooperative algorithm adaptive aggregation
  • 相关文献

参考文献11

  • 1Fusiello A, Roberto V, Trucco E, Efficient stereo with multiple windowing. In: Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 1997. 858-863.
  • 2Marr D, Poggio T. Cooperative computation of stereo disparity. Science, 1976,194:283-287.
  • 3Scharstein D, Szeliski R. Stereo matching with nonlinear diffusion. Int'l Journal of Computer Vision (IJCV), 1998,28(2):155-174.
  • 4Okutomi M, Kanade T. A locally adaptive window for signal matching. Int'l Journal of Computer Vision (IJCV), 1992, 7(2):143-162.
  • 5Zitnick L, Kanade T. A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(7):675-684.
  • 6Mayer H. Analysis of means to improve cooperative disparity estimation. In: Proc. of the ISPRS Workshop on Photogrammetric Image Analysis. 2003. http://www.commission3.isprs.org/pia/papers/pia03_s1p2.pdf
  • 7Yoon KJ, Kweon IS. Locally adaptive support-weight approach for visual correspondence search. In: Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2005. 924-931.
  • 8Okutomi M, Kanade T. A multiple-baseline stereo. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15(4):353-363.
  • 9Kimura S, Shinbo T, Yamaguchi H, Kawamura E, Naka K. A convolver-based real-time stereo machine (SAZAN). In: Proc. of the Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 1999. 457-463.
  • 10Jia YD, Zhang XX, Li MX, An LP. A miniature stereo vision machine (MVSM-III) for dense disparity mapping. In: Proc. of the Int'l Conf. on Pattern Recognition (ICPR 2004). IEEE Computer Society, 2004. 728-731.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部