期刊文献+

基于灰色Verhulst的网络安全态势感知模型 被引量:28

A situation awareness model of network security based on grey Verhulst model
下载PDF
导出
摘要 为了满足对抗性环境中对网络安全监测和预警的需要,提出了一种非等时距灰色Verhulst残差修正的安全态势感知模型.由非等时距的原始采样风险数据序列入手,根据累加序列所呈现出"S"形或反"S"形的摆动特征,选用灰色Verhulst模型或其反函数模型预测出网络未来的风险值,然后基于多级残差对模型的预测精度进行修正,最后应用修正后的新模型得到直观的网络未来安全态势曲线图.经过试验示例与仿真,表明该模型对网络安全态势的感知能够达到令人满意的拟合精度,具有实用价值. To meet the need of the monitoring and early-warning to the safety of the network system within the oppositional environment, this paper proposed a situation awareness model for the network security based on the unequal interval grey Verhulst model with residual correction. Starting with the unequal interval original sampling risk data sequence, it selected the grey Verhulst model or its inverse function to forecast the future risk value of network based on the swaying character of S or reverse S shape presented by accumulated sequences. Through modifying the forecast precision of the model based on the multilevel residual error, the intuitionistic situation curve of the network security was obtained. Results of the experiment and simulation indicate that the presented model can achieve a satisfactory precision on situation awareness of the network security and can be used practically.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第5期798-801,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金重大计划资助项目(90718003) 高校博士点基金资助项目(20050217007)
关键词 非等时距 灰色VERHULST模型 残差修正 态势感知 态势曲线 non-equal interval grey Verhulst model residue correct situation awareness situation curve
  • 相关文献

参考文献9

  • 1MARK L H, OLGA S, KAREN A H. On-line situation assessment for unmanned air vehicles [ C ]//Proceedings Fourteenth International Florida Artificial Intelligence Research Society Conference. Florida: Key West, FL, 2001:44 -48.
  • 2TIM B. Intrusion detection systems & muhisensor data fusion : creating cyberspace situational awareness [ J ]. Communications of the ACM, 2000, 43(4) : 99 - 105.
  • 3MIAO A X, ZACHARIAS G L, SHIH-PING K, et al. A Computational Situation Assessment Model for Nuclear Power Plant Operations [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1997, 27(6) : 728 -742.
  • 4MULGUND S, RINKUS G, ILLGEN C, et al. OLIPSA: On-line intelligent situation awareness in the tactical air processor for situation assessment [ EB/OL ]. http :// citeseer, ist. psu. edu/264599, html.
  • 5邓聚龙.灰色系统理论[M].武汉:华中科技大学出版社,2002.
  • 6刘思峰,郭天榜.灰色系统理论及应用[M].河南:河南大学出版社,1998.
  • 7朱华吉,马少娟.非等时空距GM(1,1)模型在建筑物沉降预测中的应用[J].测绘工程,2001,10(4):39-41. 被引量:22
  • 8Honeynet Project. Know your enemy: statistics [ EB/ OL]. [ 2001 - 07 - 22 ] http ://www. HoneyNet. org/papets/stats/.
  • 9陈秀真,郑庆华,管晓宏,林晨光.网络化系统安全态势评估的研究[J].西安交通大学学报,2004,38(4):404-408. 被引量:73

二级参考文献8

  • 1[1]Tim B. Multisensor data fusion for next generation distributed intrusion detection systems[A]. 1999 IRIS National Symposium on Sensor and Data Fusion, Laurel,USA,1999.
  • 2[2]Tim B. Intrusion systems and multisensor data fusion: creating cyberspace situational awareness[J]. Communications of the ACM, 2000, 43(4): 99~105.
  • 3[3]Martin R, Chris G.Snort users manual, Snort release 2.0.0[EB/OL].http://www.snort.org/docs/SnortUsersManual.pdf,2002-07-06.
  • 4[4]Tim B, Roger R. Defense-in-depth revisited:qualitative risk analysis methodology for complex network-centric operations[EB/OL].http://www.silkroad.com/papers/pdf/archives/defense-in-depth-revisited-original.pdf,2002-07-23.
  • 5[5]Honeynet Project.Know your enemy: statistics[EB/OL].http://www.HoneyNet.org/papers/stats/, 2001-07-22.
  • 6臧德彦.灰色系统理论在海堤沉降预测中的应用[J].测绘工程,1999,8(2):50-54. 被引量:16
  • 7王玲玲,刘汉东,谢英华.深基坑变形的灰色预测模型[J].华北水利水电学院学报,1999,20(3):41-43. 被引量:11
  • 8吕海涛,赵林明.应用灰色模型(GM)时注意的一些问题[J].华北水利水电学院学报,2000,21(1):76-78. 被引量:16

共引文献119

同被引文献222

引证文献28

二级引证文献329

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部