期刊文献+

时滞BAM神经网络的数值逼近

Numerical approximation of an n-dimensional BAM neural network model with multi-delays
下载PDF
导出
摘要 研究了一类重要的多时滞BAM神经网络模型的Hopf分支的数值逼近问题.将时滞差分方程表示为映射,然后利用离散动力系统的分支理论,给出了差分方程的Hopf分支存在的条件,得到了连续模型的Hopf分支与其数值逼近的关系,证明了当步长充分小时,数值Hopf分支值逼近于原方程的Hopf分支值. The numerical approximation of a class neural network models with two delays was studied. First, the delay deference equation was expressed as mapping. By employing the theories of bifurcation for discrete dynamical systems, the conditions to guarantee the existence of Hopf bifurcations for numerical approximation were obtained. The relation of Hopf bifurcations between the continuous and the discrete systems were obtained. It is proved that the numerical Hopf bifurcation values are approximate to those of the original equation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第5期832-835,共4页 Journal of Harbin Institute of Technology
基金 中国博士后科学基金资助项目(2004036108)
关键词 BAM神经网络 时滞 HOPF分支 数值逼近 EULER方法 BAM neural network delay Hopf bifurcation numerical approximation Euler method
  • 相关文献

参考文献9

  • 1CHEN Y, WU J. Slowly oscillating periodic solutions for a delayed frustrated network of two neurons [ J ] J. Math Anal Appl, 2001, 259:188 -208.
  • 2WEI J, RUAN S. Stability and bifurcation in a neural network model with two delays[J]. Physica D, 1999, 130:255 - 272.
  • 3FARIA T. On a planar system modelling a neuron network with memory [ J ]. J Differential Equations, 2000, 168:129 - 149.
  • 4WEI J, VELARDE M, MAKAROV V, et al. Oscillary phenomena and Stability of periodic solutions in a simple neuyal network with delay[ J]. Nonlinear phenomena in complex systems, 2002, 5(4):407-417.
  • 5SONG Yongli, HAN Maoan, WEI Junjie. Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays[ J] . Physica D, 2005, 200:185-204.
  • 6FORD N J, WULF V. Numerical Hopf bifurcation for the delay logistic equation [ R ]. [ S. l. ] : Manchester Centre for Computational Mathematics, 1998, Technical Report 323 : 1360 - 1735.
  • 7FORD N J, WULF V. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations [ J ]. JCAM, 1999, 111:153 - 162.
  • 8ZHAGN Chunrui, LIU Mingzhu, ZHENG Baodong. Hopf bifurcation for a class of delay differential equations [ J]. Applied mathematics and computation, 2003,146: 335 - 349.
  • 9ZHANG Chunrui, ZHENG Baodong. Hopf bifurcation in numerical approximation of a n-dimension neural network model with multi-delay [ J ]. Chaos, Solitons and fractals, 2005, 25 : 129 - 146.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部