期刊文献+

带噪的战场声信号盲分离方法研究 被引量:1

Blind Source Separation of Noisy Acoustics Mixtures of Battlefield Sound-taget
下载PDF
导出
摘要 提出了一种噪声环境中战场混合声信号盲分离方法。基于含噪的独立分量分析模型,对观测信号进行准白化,去除噪声引起的协方差偏移量;定义观测信号中随机变量的高斯矩为无偏估计的目标函数,最大化此目标函数得到了一种改进的FastICA算法,应用于带噪的战场混合声信号盲分离。仿真实验证明,改进算法能较好改善分离效果,具有很好的鲁棒性。 A new method of BSS(Blind Source Separation) for acoustic mixtures of the battlefield sound-target in the noisy environment is proposed. Based on the noisy ICA (Independent Component Analysis) model, the observations are quasi-whitened to reduce the bias of covariance result from the noise. And the Gaussian moments of random variable in the mixtures are defined as the objective function for no asymptotic bias estimation. The improved FastICA algorithm is proposed by maximizing this objective function, and it is applied successfully to separate the acoustic mixtures in the military field. The simulation demonstrates that the proposed method is robust and can improve the separation effect obviously.
作者 韩政 梁端丹
机构地区 西安通信学院
出处 《电声技术》 2008年第6期53-56,共4页 Audio Engineering
关键词 盲信号分离 带噪声信号 快速独立分量分析 高斯矩 BSS noisy acoustic mixtures FastICA Gaussian moment
  • 相关文献

参考文献6

  • 1CHOI S, CICHOCKI A, PARK H M, et al. Blind source separation and indepent component analysis: a review[J]. Neural Information Processing-letters and Reviews,2005, 1 (6) : 1-57.
  • 2HYVARINEN A. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 7(9) : 1482-1483.
  • 3HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Newwork, 1999,10 (3) : 626-634.
  • 4HYVARINEN A, OJA E. Independent component analysis[M]. [S.l.]:John Wiley and Sons,2001.
  • 5HYVARINEN A. Gaussian moments for noisy independent component analysis[J]. IEEE Signal Processing Letters, 1999,6(6) : 145-147.
  • 6HYVARINEN A. Fast independent component analysis with noisy data using gaussian moments[C]// Proceedings of the 1999 IEEE Int. Symp. on Circuits and Systems. Orlando : IEEE Press, 1999 : 57-61.

同被引文献15

  • 1GERVEN V S,COMPERNOLLE V D.Signal separation in a symmetric adaptive noise canceler by output decorrelation[C]//Proc.ICASSP'92.[S.1.]:IEEE Press,1992 (4):221-224.
  • 2COMON P.Independent component analysis,a new concept[J].Signal Processing,1994:36 (3):287-314.
  • 3CARDOSO J F.Eigenstructure of the 4th-order cumulant tensor with application to the blind source separation problem[C]// Proc.ICASSP'89.Glasgow,UK:IEEE Press,1989:2109-2112.
  • 4JUTTEN C,HERAULT J.Blind separation of sources,Part Ⅰ:An adaptive algorithm based on neuromimatic architecture[J].Signal Processing,1991,24(1):1-10.
  • 5YELLIN D,WEINSTEIN E.Multichannle signal separation:Methods and analysis[J].IEEE Trans.Signal Processing,1996,44(1):106-118.
  • 6THI H L N,JUTTEN C.Blind source separation for conbolutive mixtures[J].Signal Process,1995,45(2):209-229.
  • 7SHANSUMDER S,GIANNALIS G.Multichannel blind signal separation and reconstruction[J].IEEE Trans.Speech Audio Processing,1997(5):515-528.
  • 8LAMBERT R,BELL A.Blind separation of multiple speakers in a multipath environment[C]//Proc.ICASSP' 97.Munich,Germany:IEEE Press,1997:423-426.
  • 9LEE T,BELL A,LAMBERT R.Blind separation of delayed and convolved sources[M].Cambridge MA:MIT Press,1997.
  • 10PARRA L.Adaptive processing of sequences and data structures[M].Berlin:Springer,1998.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部