期刊文献+

基于CFNN的核蒸汽发生器水位控制 被引量:5

CFNN based water level control for nuclear steam generator
下载PDF
导出
摘要 鉴于常规的PID控制存在控制对象参数变化时控制参数无法改变的不足,从而根据一个核蒸汽发生器(NSG)的简化数学模型,将一种补偿模糊神经网络(CFNN)用于NSG水位的控制。该网络由于引入了补偿神经元,使网络的容错性更好,系统更稳定。同时在神经网络学习算法中动态优化补偿模糊运算,使网络更适应,训练速度更快。仿真表明,该方法在装置负荷变化时比常规的PID控制方法超调量小,收敛速度快。该网络能在线调整参数,动态优化模糊规则,适于在线学习控制。该控制方法对NSG水位智能控制研究具有一定意义。 Because normal PID controller can't change its parameters according to the change of control object parameters. In this paper, the compensatory fuzzy neural network (CFNN) was used with a simplified model of nuclear steam generator (NSG) to design a NSG water level controller. Compensatory neurons which were introduced in the CFNN will make the control system improve the quality of fault tolerant and more stable. Meanwhile compensative fuzzy computation is optimized dynamically in the study algorithm of neural network, therefore the network is much more adaptive and the training speed is much faster. The results of simulation show that under this control method the system has smaller maximum overshoot and faster convergence speed than that of under normal PID control method. The CFNN can not only adjust parameters properly on line, but also can optimized relevant fuzzy reasoning in dynamic way, so it suit to be used on ling learning and control. The control method used in this paper is meaningful to the research of NSG water level intelligent control.
出处 《核科学与工程》 CAS CSCD 北大核心 2008年第2期158-162,共5页 Nuclear Science and Engineering
关键词 核蒸汽发生器 水位控制 补偿模糊神经网络 nuclear steam generator water level control compensatory fuzzy neural networks
  • 相关文献

参考文献4

  • 1Park G Y, Seong P H. Application of a self-orgnizing fuzzy logic controller to. nuclear steam generator lever control[J]. Fusion Engineering and Design, 1997, 167 (3) :345-356.
  • 2Park G Y, Seong P H. Application of a fuzzy learning algorithm to nuclear steam generator[J]. Control Annals of Nuclear Energy,1995,22(3-4) :135-146.
  • 3Cho Byung Hak, Hee Cheon No. Design of stability and performance robust fuzzy logic gain scheduler for nuclear steam generators[J]. IEEE Transactions on Nuclear Science, 1997, 44(3): 1431-1441.
  • 4汪纪锋,蒋玉莲.基于自适应学习速率法的补偿模糊神经网络[J].重庆大学学报(自然科学版),2005,28(10):82-85. 被引量:3

二级参考文献6

  • 1丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.55-87.
  • 2SEKER, EVANS, AYDIN, et al. Compensatory Fuzzy Neural Networks-based Intelligent Detection of Abnormal Neonatal Cerebral Doppler Ultrasound Waveforms [ J ]. IEEE Transaction on Information Technology in Biomedicine,2001,3(5) :187 - 194.
  • 3ZI-IANG YAN-QING, KANDEK Compensatory Neurofuzzy Systems with Fast Learning Algorithms [J]. IEEE Transactions on Neural Networks, 2002,1(9) :83 -105.
  • 4LIN FAA-JENG, WAI RONG-JONG. Adaptive Fuzzy-neural-network Control for Induction Spindle Motor Drive [ J ]. IEEE Transactions on Energy Conversion, 2002, 4 (17):507 -513.
  • 5ZHENG PEI, KEYUN QIN, YANG XU. Dynamic Fuzzy Neural-network Identification and Its Application Systems [ J ].IEEE International Conference on Man and Cybernetics,2003,10(5) :4 974 -4 979.
  • 6雷华,王明渝.基于神经网络的速度估计方法[J].重庆大学学报(自然科学版),2004,27(2):107-110. 被引量:8

共引文献2

同被引文献54

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部