摘要
设X、Y为Banach空间,T∈L(X,Y)为线性算子,T的核N(T)为迫近集,T的值域R(T)在Y中为逼近紧的.本文征得T的度量广义逆T的定义域D(T)=Y,由此不适定线性算子方程Tx=y,对任意y∈Y均有最佳逼近解.
Amuse X, Y is Banach space, T ∈ L(X, Y) is liner operator N(T) is approximate set and R(T) is approximate compact in Y, this paper proves D( T^δ) = Ywhere T^δ is metric generalized inverse of T, Hence arbitrary y ∈Y, illposed liner operator equation Tx = y exists the best aooroximate solution
出处
《哈尔滨师范大学自然科学学报》
CAS
2008年第3期1-3,共3页
Natural Science Journal of Harbin Normal University
基金
国家自然科学基金资助项目(10671049)资助
关键词
BANACH空间
不适定算子广义逆
度量广义逆
最佳逼近解
Banach space
Illposed operator generalized inverse
Metric generalized inverse
The best approximate solution