期刊文献+

Lipschitz非线性系统降阶观测器设计的新方法

A NEW DESIGN METHOD FOR LIPSCHITZ NON-LINEAR SYSTEMS
下载PDF
导出
摘要 讨论Lipschitz非线性系统降阶观测器的设计,并指出在非线性系统全阶观测器存在的条件下,它的降阶观测器同时存在,且它的降阶观测器的设计方法依赖于Raccati方程的解. This paper deals with the design of reduced - order observers for Lipschitz non - linear systems. It shows that the conditions under which a full - order observer exists also guarantee the existence of a reduced - order observer. The design method of the reduced - order observer that is dependent on the solution of the Raccati equation.
作者 于瑶 徐明跃
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2008年第3期21-23,共3页 Natural Science Journal of Harbin Normal University
关键词 LIPSCHITZ条件 非线性方程 降阶观测器 Raccati方程 Lipschitz condition Nonlinear systems Reduced - order observers Raccati equation
  • 相关文献

参考文献8

  • 1A. J. Kemer and A. Isidori, Linearization by output injection and nonlinear observers, Syst. Control Lett., 1983,3 : 47-52.
  • 2R. Rajamani. Observer for Lipschitz nonlinear systems. IEEE Trans. Automat. Contr. ,1998,43(5) :397 -401.
  • 3F. E. Thau. Observing the state of nonlinear dynamic system. Int. J. Control, 1973,17(3):471 -480.
  • 4F. L. Zhu and Z, Z. Han. A note on observers for Hpschitz nonlinear systems. IEEE Trans. Automat. Contr. ,2002, 47 (10) :1751 - 1754.
  • 5X. H. XJao and W. Gao. Nonlinear observer design by observer error linearization. SIAM J. Control Optim. ,1989,27( 1 ) : 199 -216.
  • 6G. R. Duan. Linear System Theroy. HIT Publication,2004: 288 - 297.
  • 7G. Besancon and H. Hammouri. Reduced order observer for a class of nonuniformly observable systems, in Proc. 34th Conf. Decision and Control, New Orleans, LA, 1995:121 - 125.
  • 8S. H. Zak. On the stabilizatiott and observation of nonlinear/ uncertain dynamic systems. IEEE Trans. Automat. Contr:, 1990,35(5) :604 -607.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部