期刊文献+

基于SAM和GA/SVM的肿瘤基因表达谱分类算法 被引量:1

The Approach for Classification of Tumor Gene Expression Data Based on SAM and GA/SVM
下载PDF
导出
摘要 基因芯片技术在肿瘤分型分类的研究中得到了广泛的应用.为了处理肿瘤基因表达谱数据,建立肿瘤分类预测模型,文中采用基因表达差异显著性分析方法,支持向量机,遗传算法相结合的多步骤降维分类方法.采用该方法处理大肠癌和白血病数据集,筛选到基因数量较少并且分类准确度较高的特征基因子集.实验结果表明,文中的方法可以快速有效地筛选肿瘤特征基因,获得更好的分类效果. Microarray technology has been widely used in the research of tumor classification. To analyze gene expression data and establish prediction models of tumor classification, a multi-step gene dimensionality reduction method is proposed. The method combines with significant analysis of microarrays (SAM), genetic algorithm (GA) and support vector machine (SVM). The approach is evaluated over the two datasets of colorectal cancer and leukemia, a tumor related subset with small gene numbers and high classification accuracy is selected. The experiment results show the efficiency and effectiveness of the proposed method for screening tumor related genes and achieving better classification accuracy.
作者 李小波
出处 《杭州师范大学学报(自然科学版)》 CAS 2008年第3期202-205,215,共5页 Journal of Hangzhou Normal University(Natural Science Edition)
关键词 基因表达谱 分类 基因表达差异显著性分析方法(SAM) 遗传算法(GA) 支持向量机(SVM) gene expression, classification significant analysis of microarrays (SAM) genetic algorithm (GA) support vector machine (SVM)
  • 相关文献

参考文献10

  • 1[1]Yeoh E J,Ross M E,Shurtleff S A,et al.Classification,subtype discovery,and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling[J].Cancer Cell,2002,1 (2):133-143.
  • 2[2]Tysger V G,Tibshirani R,Chu G.Significance analysis of microarrays applied to the ionizing radiation response[J].Proc Natl Acad Sci U S A,2001,98 (9):5116-5121.
  • 3[3]Vapnik V N.An overview of statistical learning theory[J].IEEE Trans Neural Netw,1999,10 (5):988-999.
  • 4[4]Franc V,Hlavac V.Statistical pattern recognition toolbox for matlab[EB/OL].[2008-02-26] http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.
  • 5[5]Peng Si-hua,Xu Qiang-hua,Ling Xue-feng,et al.Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines[J].FEBS Lett,2003,555 (2):358-362.
  • 6[6]Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evol Comput,2000,8 (2):173-195.
  • 7[7]Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286 (5439):531-537.
  • 8[8]Barrett T,Troup D B,Wilhite S E,et al.NCBI GEO:mining tens of millions of expression profiles-database and tools update[J].Nucleic Acids Res,2007,35:D760-765.
  • 9[9]Bolstad B M,Irizarry R A,Astrand M,et al.A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J].Bioinformatics,2003,19 (2):185-193.
  • 10[10]Soikkeli J,Lukk M,Nummela P,et al.Systematic search for the best gene expression markers for melanoma micrometastasis detection[J].J Pathol,2007,213 (2):180-189.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部