期刊文献+

基于切片谱免疫系统的旋转机械故障诊断 被引量:2

Rotating machinery fault diagnosis based on slice spectrum-AIS
下载PDF
导出
摘要 根据旋转机械故障振动信号的特点,本文基于免疫学机制,提出了切片谱免疫故障诊断方法,建立了基于该方法的诊断模型,介绍了该诊断方法的实现过程。切片谱免疫故障诊断方法利用双谱对先验故障样本进行分析,获得与旋转机械故障类型一一对应的特征样本,将特征样本归一化作为人工免疫系统(AIS)模式识别的特征向量,利用AIS中的阴性选择算法(NSA)进行自己-非己匹配运算得到检测器集,然后将建立(训练)好的检测器集应用于实时故障诊断。通过轴承故障诊断的实验,结果表明,本方法是可行和有效的。 A method of rotating machinery fault diagnosis, combing diagonal spectrum with artificial immune system (AIS) , is presented. As a fitted tool for processing non-Gaussian signal and nonlinear system, slice spectrum is able to eliminate additive Gaussian measurement noise, boost signal-to-noise ratio. Belonging to AIS, negative-selection algorithm (NSA) inspired by the mechanism of human immune system is capable of discriminating between the self (body elements) and the non-self (foreign pathogens). However, in our application, the self is defined to be the normal status and the non-self the fault category of rotating machinery. As input feature vector, diagonal spectrum, calculated from vibration rotating machinery, is classified by the detectors generated by NSA, and finally determines the fault modes of rotating machinery. The experiment of rolling element bearing shows that the approach based on diagonal spectrum-AIS is practical and effective.
作者 周鹏 秦树人
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第6期1198-1202,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50605065)资助项目
关键词 故障诊断 切片谱 NSA 轴承 fault diagnosis slice spectrum NSA rolling element bearing
  • 相关文献

参考文献12

二级参考文献55

共引文献205

同被引文献32

  • 1杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学(E辑),2005,35(8):817-829. 被引量:28
  • 2李涛.基于免疫的网络监控模型[J].计算机学报,2006,29(9):1515-1522. 被引量:53
  • 3de Castro L N, Timmis J I. Artificial immune systems as a novel soft computing paradigm. Soft Computing, 2003, 7(8): 526-544.
  • 4Timmis J, Neal M. A resource limited artificial immune system for data analysis. Knowledge:Based Systems, 2001, 14(3-4): 121-130.
  • 5de Castro L N, Von Zuben F J. An evolutionary immune network for data clustering. In: Proceedings of the 6th Brazilian Symposium on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2000. 84-89.
  • 6Neal M. An artificial immune system for continuous analysis of time-varying data. In: Proceedings of the 1st International Conference on Artificial Immune Systems. Berlin, Germany: Springer-Verlag, 2002. 76-85.
  • 7Neal M. Meta-stable memory in an artificial immune network. In: Proceedings of the 2nd International Conference on Artificial Immune Systems. Berlin, Germany: Springer- Verlag, 2003. 168-180.
  • 8Nasraoui O, Gonzalez F, Cardona C, Rojas C, Dasgupta D. A scalable artificial immune system model for dynamic unsupervised learning. In: Proceedings of Genetic and Evolutionary Computation Conference. Chicago, USA: Springer- Verlag, 2003. 219-230.
  • 9Hart E, Ross P. Exploiting the analogy between the immune system and sparse distributed memories. Genetic Programming and Evolvable Machines, 2003, 4(4): 333-358.
  • 10Yue X, Mo H W, Chi Z X. Immune-inspired incremental feature selection technology to data streams. Applied Soft Computing, 2008, 8(2): 1041-1049.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部