期刊文献+

一类全局优化问题的新的凸化、凹化法 被引量:4

A new method of convexification and concavification for a kind of global optimization
下载PDF
导出
摘要 对于目标函数非凸非凹,而约束函数具有凹、凸性的非线性规划问题,本文提出了一种新的凸化凹化法。把目标函数直接凸化、凹化,再把原问题转化为反凸规划问题或极小化问题或标准D.C.规划问题,从而求得原问题的全局最优解。 This paper proposes a kind of convexification and concavification method to convert a non-convex and non-concave objective function into a convex or concave function in the programming problems with convex or concave constraint functions.Then it proves that the original programming problems can be converted into an equivalent concave minimization problem,or reverse convex programming problem,or canonical D.C.programming problem.
作者 何颖
出处 《长春大学学报》 2008年第2期1-6,共6页 Journal of Changchun University
基金 重庆市教委基金资助项目(030801) 重庆市科委研究基金资助项目(8409)
关键词 运筹学 全局最优化问题 反凸规划问题 凹极小问题 operational research global optimization problem reverse convex programming problem convex minimization problem
  • 相关文献

参考文献9

  • 1吴至友.非线性规划的单调化方法[J].重庆师范大学学报(自然科学版),2004,21(2):4-7. 被引量:6
  • 2张晋梅,孙小玲.单调全局最优化问题的凸化外逼近算法[J].应用数学与计算数学学报,2003,17(1):20-26. 被引量:2
  • 3X. L. Sun,K.I.M. McKinnon,D. Li. A convexification method for a class of global optimization problems with applications to reliability optimization[J] 2001,Journal of Global Optimization(2):185~199
  • 4D. Li,X.L. Sun,M.P. Biswal,F. Gao. Convexification, Concavification and Monotonization in Global Optimization[J] 2001,Annals of Operations Research(1-4):213~226
  • 5D. Li,X. L. Sun. Local Convexification of the Lagrangian Function in Nonconvex Optimization[J] 2000,Journal of Optimization Theory and Applications(1):109~120
  • 6Z. K. Xu. Local Saddle Points and Convexification for Nonconvex Optimization Problems[J] 1997,Journal of Optimization Theory and Applications(3):739~746
  • 7Ge Renpu. A filled function method for finding a global minimizer of a function of several variables[J] 1990,Mathematical Programming(1-3):191~204
  • 8Karla Leigh Hoffman. A method for globally minimizing concave functions over convex sets[J] 1981,Mathematical Programming(1):22~32
  • 9S. -P. Han,O. L. Mangasarian. Exact penalty functions in nonlinear programming[J] 1979,Mathematical Programming(1):251~269

二级参考文献19

  • 1H. P. Benson, "Deterministic algorithm for constrained concave minimization: A unified critical survey", Naval Res. Logist., Vol. 43, pp. 765-795, 1996.
  • 2P. C. Chen, P. Hansen and B. Jaumard, "On-line and off-line vertex enumeration by adjacency lists", Oper. Res. Lett., Vol. 10, pp. 403-409, 1991.
  • 3K. L. A. Hoffman , "A method for globally minimizing concave functions over convex set", Math. Program., Vol. 20, pp. 22-23, 1981.
  • 4R. Horst and H. Tuy, " Global Optimization: Deterministic Approaches", 2nd ed., Springer-Verlag, Heidelberg, 1993.
  • 5R. Horst and J. de Vries, "On finding new vertices and redundant constraints in cutting plane algorithms for global optimization", Oper. Res. Lett., Vol. 7, pp. 85-90, 1988.
  • 6D. Li , X. L. Sun, M. P. Biswal and F. Gao, "Convexification, concavification and monotonization in global optimization", Annals of Operations Research, Vol. 105, pp. 213-226,2001.
  • 7X. L. Sun, K. McKinnon and D. Li, "A convexification method for a class of global optimization problem with application to reliability optimization", Journal of Global Optimization, Vol.21, pp. 185-199, 2001.
  • 8H. Tuy, "Monotonic optimization: problems and solution approaches", SIAM J. Optim., Vol.11, pp. 464-494, 2000.
  • 9HORST R, PARDALOS P M,THOAI N V. Introduction to Global Optimization [ M ]. Dordrecht Netherland:Kluwer Academic Publisher. 1996.
  • 10LI D,SUN X L. Local Convexification of Lagrangian Function in Nonconvex Optimization[ J]. Journal of Optimization Theory and Applications. 2000,104:109-120.

共引文献6

同被引文献25

  • 1吴至友.非线性规划的单调化方法[J].重庆师范大学学报(自然科学版),2004,21(2):4-7. 被引量:6
  • 2WUZhiyou,ZHANGLiansheng,BAIFusheng,YANGXinmin.CONVEXIFICATION AND CONCAVIFICATION METHODS FOR SOME GLOBAL OPTIMIZATION PROBLEMS[J].Journal of Systems Science & Complexity,2004,17(3):421-436. 被引量:3
  • 3全靖,吴至友.单调优化的一种新的凸化、凹化方法[J].重庆师范大学学报(自然科学版),2004,21(4):10-12. 被引量:3
  • 4Wu Z Y,Lee H W J,Yang X M.A class of convexification and concavification methods for non-monotone Optimization problems[J].Optimization,2005,54(6),605-625.
  • 5Li D,Sun X L,Gao F.Convexification,concavification in global optimization[J].Annals of Optimization Research,2001,105:213-226.
  • 6Wu Z Y,Bai F S,Zhang L S.convexification and concavification for a general class of global optimization problems[J].Journal of Global Optimization,2005,31:45-60.
  • 7Wu Zhiyou, Bai Fusheng, Zhang Liansheng. Convexification and concavification for a general class of global optimization problems[J]. J. Global Optim., 2005, 31(1): 45-60.
  • 8Li Duan, Sun Xiaoling. Local convexification of the lagrangian function in nonconvex optimization [Jl. J. Optim. The. Appl., 2000, 104(1): 109 120.
  • 9Zhu Wenxing, Fu Qingxiang. A sequential convexification method for continuous global optimiza- tion[J]. J. Global Optim., 2003, 26(2): 167 182.
  • 10李博,周伊佳.全局最优化问题的凸凹化法[J].青岛科技大学学报(自然科学版),2010,31(3):321-324. 被引量:2

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部