期刊文献+

矢量非傍轴平顶高斯光束的光强研究

Study of Intensity of Vectorial Nonparaxial Flattened Gaussian Beams
下载PDF
导出
摘要 从矢量Rayleigh-Sommerfeld衍射积分公式出发,以矢量非傍轴平顶高斯光束为例,对其横向光强分布进行了研究.研究结果表明,非傍轴矢量光束的两种光强表示式,即传统光强公式和时间平均坡印廷矢量的z分量,它们之间的相对误差与束腰宽度和波长之比w0/λ有关. Starting from the vectorial Rayleigh - Sommerfeld diffraction integrals and taking the vectorial nonparaxial flattened Gaussian beams as an example, the transversal intensity of vectorial nonparaxial flattened Gaussian beams is studied. Numerical calculation results show the two expressions for the intensity of nonparaxial vectorial beams, i. e. , the convential intensity expression and the z component of the time - averaged Poynting vector, their relative error depends on the the waist - width to wavelength ratio w0/.
作者 康小平
机构地区 琼州学院物理系
出处 《琼州学院学报》 2008年第2期12-14,共3页 Journal of Qiongzhou University
基金 国家教育部重点资助项目(208110) 海南省教育厅高校科研资助项目(Hj200780)
关键词 激光光学 矢量非傍轴平顶高斯光束 传统光强表示式 时间平均坡印廷矢量的z分量 相对误差 Laser optics vectorial nonparaxial flattened Gaussian beams conventional intensity expression zcomponent of the time - averaged poynting vector relative error
  • 相关文献

参考文献1

二级参考文献11

  • 1曹清,邓锡铭,郭弘.横截面上光强的精确表述[J].光学学报,1996,16(7):897-902. 被引量:44
  • 2高曾辉,吕百达.矢量非傍轴双曲余弦-高斯光束[J].强激光与粒子束,2005,17(10):1479-1483. 被引量:5
  • 3Born M,Wolf E.Principle of optics (7th ed.)[M].Combridge:Combridge University Press,1999.
  • 4Agrawal G P.Gaussian beam propagation beyond the paraxial approximation[J].J Opt Soc Am A,1979,69(4):575-578.
  • 5Laabs H,Friberg A T.Nonparaxial eigenmodes of stable resonators[J].IEEE J Quantum Electron,1999,35(2):198-207.
  • 6Zeng X D,Liang C H,An Y Y.Far-field propagation of an off-axis Gaussian wave[J].Appl Opt,1999,38(30):6253-6256.
  • 7Chen C G,Konkola P T,Ferrera J,et al.Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations[J].J Opt Soc Am A,2002,19(2):404-412.
  • 8Duan K L,Lü B D.Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture[J].Opt Lett,2003,28(24):2440-2442.
  • 9Porras M A.Non-paraxial vectorial moment theory of light beam propagation[J].Opt Commun,1996,127(6):79-95.
  • 10Porras M A.Finiteness and propagation law of the power density second-order moment for diffracted scalar light beam[J].Optik,1999,110(9):417-420.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部