期刊文献+

基于二维几何特征的微地形快速识别算法 被引量:1

Fast Recognition Algorithm of Micro-terrain Based on 2D Geometric Features
下载PDF
导出
摘要 为满足水下超声波准确、实时探测海底微地形的需要,研制出一种摆动式单波束探测系统。该系统在探测实验过程中,因出现高程奇异值而造成数字"伪"地形产生,由此提出一种基于二维几何特征的水平、斜坡和凹凸不平三种微地形模式的快速识别算法。该算法建立在现代统计分析与模糊聚类的理论基础上,具有准确性高、实时性好以及抗干扰能力强等优点;并由物理模拟实验证明,利用该算法能有效消除高程奇异值的影响,识别出来的微地形模式准确可靠,为下一步快速重构逼真的数字微地形提供了保障,能够应用于真实的海底微地形探测。 In order to explore benthonic micro-terrain by the underwater ultrasonic truly and real-timely, a pendulum single beam bathymeter was devised. Because the digital fake micro-topography was worked by the exceptional elevation values in course of detecting the simulative micro-terrain, a fast recognition algorithm of three patterns of micro-terrain, namely the level, the gradient and the uneven, based on 2D geometric features was put forward. It establishes the theory foundations of modern statistics analysis and fuzzy clustering, and has some virtues such as high veracity, good real-time and strong power of anti-jamming etc. This algorithm proved by the physical simulation test at lab, can eliminate effectively the influences of those exceptional data as well as recognize well and truly the actual micro-terrain, furthermore afford a safeguard to restructure fleetly the lifelike micro-terrain, so can be used on the actual exploration of benthonic micro-terrain.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第12期3320-3322,3326,共4页 Journal of System Simulation
基金 国家自然科学基金(50474052)
关键词 超声波 微地形 二维几何特征 模糊聚类 算法 ultrasonic micro-terrain 2D geometric features fuzzy clustering algorithm
  • 相关文献

参考文献8

  • 1秦宣云,卜英勇.大洋富钴结壳实时开采切削深度优化分级模型研究[J].海洋工程,2005,23(3):99-104. 被引量:8
  • 2刘军.基于分形理论的单探头单波束微地形探测系统研究[D].长沙:中南大学,2006.
  • 3陈守煜,韩晓军,王建明,伏广涛.模糊聚类、识别、优选统一理论与循环迭代模型[J].大连理工大学学报,2004,44(6):883-886. 被引量:10
  • 4Abe S, Lan M S. A method for Fuzzy rules extraction directly from numerical data and its application to pattern classification [J]. IEEE Trans Fuzzy Systems (S0003-6935), 1995, 3(1): 18-28.
  • 5H Roubos, M Setnes. Compact and transparent fuzzy models and classifiers through iterative complexity reduction [J]. IEEE Trans Fuzzy Systems (S0003-6935), 2001, 9(4): 516-524.
  • 6Shinn-Ying Ho, Chia-Cheng Liu, Soundy Liu. Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm [J]. Pattern Recognition Letters (S0167-8655), 2002, 23(13): 1495-1503.
  • 7Pal N R, Bezdk J C. On Cluster Validity for the Fuzzy C-mean Model [J]. IEEE Trans Fuzzy Systems (S0003-6935), 1995, 3(3): 370-379.
  • 8翟宇梅,赵瑞星.概率天气预报的K近邻非参数估计仿真模型[J].系统仿真学报,2005,17(4):786-788. 被引量:11

二级参考文献17

共引文献29

同被引文献20

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部