期刊文献+

改进的蜜蜂进化型遗传算法 被引量:5

Improved bee evolutionary genetic algorithms
下载PDF
导出
摘要 提出一种改进的蜜蜂进化型遗传算法。在该算法中,种群的最优个体作为蜂王与被选的每个个体(雄蜂)以一定概率进行交叉操作,从而增强了对种群最优个体所包含信息的开采能力;同时,为了避免过早收敛,算法在种群次优解周围进行局部搜索,引入新的随机个体,增加算法的多样性。实验结果表明,该算法能有效地提高遗传算法性能的求解精度和收敛速度。 By the use of electroencephalogram (EEG), brain-computer interface (BCI) establishes the interfaces between human and computer. P300 is an important experiment paradigm in which the EEG signals are employed to achieve the selective text input. According to the results of detection and recognition of P300 signal in EEG, the choice of the letter given by the subject could be inferred. The dataset of P300 speller paradigm from BCI Competition III is analyzed using the algorithm designed through machine learning technique and support vector machines (SVM). The signal channels are selected and data of fewer channels are processed. Furthermore, by adjusting the size of the dataset that participate in the training, parameter v in v-SVM obtains a larger definition interval which benefits the design of the classifier. By means of the above approaches, the classification accuracy is improved. The result on testing set revealed an accuracy of 89% for classification, which is 3% higher than the one we submitted to the competition in which linear discriminant analysis (LDA) served for the classifier.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第11期2859-2862,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60573066) 广东省自然科学基金项目(5003346) 教育部留学回国人员科研启动基金项目(教外司留[2006]331号)。
关键词 蜜蜂进化型遗传算法 配种选择算子 局部搜索 收敛性 多样性 brain-computer interface electroencephalogram P300 speller paradigm support vector machines classification
  • 相关文献

参考文献14

  • 1Schalk G,Dennis J,Thilo H,et al.BCI2000:A general-purpose brain-computer interface(BCI)system[J].IEEE Transactions on Biomedical Engineering,2004,51(6):1034-1043.
  • 2Donchin E,Spencer K M,Wijesinghe R.The mental prosthesis:Assessing the speed of a P300-based brain-computer interface[J].IEEE Transactions on Rehabilitation Engineering,2000,8(2):174-179.
  • 3BlankertzB,Miiller K R,krusienski D J,et al.BCI competition Ⅲ website[OL].http://ida.first.fraunhofer.de/projects/bci/competition_iii/.
  • 4Xu N,Gao X,Hong B,et al.Enhancing P300 wave detection using ICA-based subspace projections for BCI application[J].IEEE Transactions on Biomedical Engineering,2004,51(6):1067-1072.
  • 5Bostanov V.Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram[J].IEEE Transactions on Biomedical Engmeering,2004,51(6):1057-1061.
  • 6Miiller K R.Mika S,R(a)tsch G,et al.An introduction to kernelbased learning algorithms[J].IEEE Trans Neural Networks,2001,12:181-201.
  • 7Blankertz B,M(u)ler K R,Krusienski D J,et al.The BCI competition Ⅲ:Validating alternative approaches to actual BCI problems[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):153-159.
  • 8Amari S,Wu S.Improving support vector machine classers by modifying kernel functions[J].Neural Networks,1999,12(6):783-789.
  • 9Campbell C.Kernel methods:A survey of current techniques[J].Neurocomputing,2002,48(1-4):63-84.
  • 10Cristianini N,Shawe Taylor J.An introduction to support vector machines and other kernel-based learning methods[M].Cambridge University Press,2000.

同被引文献43

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部