期刊文献+

基于PSO的模糊K-Prototypes聚类 被引量:2

Fuzzy K-Prototypes clustering based on particle swarm optimization
下载PDF
导出
摘要 模糊K-Prototypes(FKP)算法能够对包含数值属性和分类属性相混合的数据集进行有效聚类,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于粒子群优化(PSO)算法和FKP算法的混合聚类算法,先利用PSO算法确定FKP的初始聚类中心,再将PSO聚类结果作为后续FKP算法的初始值。实验结果表明,新算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法。 Fuzzy K-Prototypes (FKP) algorithm is efficient in clustering data sets with mixed numeric and categorical values, with the defects including sensitivity to the initial data and being easy to run into the local optimization. In order to overcome them, a new hybrid clustering algorithm based on particle swarm (PSO) optimization and FKP algorithm is proposed, by using PSO to determine the centroids of clusters and taking the clustering result of PSO as the initialized value of the FKP. The results show that the proposed algorithm is superior to FKP algorithm with a better astringency and stablility.
作者 尹波 何松华
出处 《计算机工程与设计》 CSCD 北大核心 2008年第11期2883-2885,共3页 Computer Engineering and Design
关键词 聚类分析 粒子群优化算法 模糊聚类算法 数值型属性 分类型属性 聚类中心 clustering analysis particle swarm optimization fuzzy clustering algorithm numeric attribute categorical attribute cluster-centroids
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R C,Shi Y Swarm intelligeace[M].San Francisco:Morgan Kaufman Publisher,2001.
  • 2Shi Y H,Eberhart R C.Fuzzy adaptive particle Swarm optimization[C].Proc of the Congress on Evolutionary Computation,Seoul Korea:IEEE Press,2001:101-106.
  • 3Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle Swarm optimization with breeding and subpopulations[C].Proc of the 3rd Genetic and Evolutionary Computation Conference,San Francisco,USA:Morga Kanfmann Publishers,2001:469-476.
  • 4Natsuki Higasshi,Hitoshi Iha.Particle swarm optimization with gaussian mutation[C].Proc of the Congress on Evolutionary Computation,Canbella,Australia:IEEE Press,2003:72-79.
  • 5Chen Yi Chen,Fun Ye.Particle swarm optimization algorithm and its application to clustering analysis[C].Taipei,Taiwan:Proceedings of the IEEE International Conference on Networking,Sensing and Control,2004:789-794.
  • 6许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 7Huang Zhexue,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical datat[J].IEEE Transactions on Fuzzy Systems,1999,7(4):446-452.
  • 8陈宁,陈安,周龙骧.数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文)[J].软件学报,2001,12(8):1107-1119. 被引量:47

二级参考文献11

  • 1Huang Zhexue,IEEE Transactions Fuzzy Systems,1999年,7卷,4期,446页
  • 2Huang Zhexue,Data Mining and Knowledge Discovery,1998年,2卷,283页
  • 3Huang Zhexue,Proc the 1st Pacific Asia Conference on Knowledge Discovery and Data Mining,1997年,21页
  • 4Chen-Yi Chen,Fun Ye.Particle swarm optimization algorithm and its application to clustering analysis[C].Taipei,Taiwan:Proceedings of the IEEE International Conference on Networking,Sensing and Control,2004.789-794.
  • 5Gao Xinbo,Ji Hongbing,Xie Weixin.A novel FCM clustering algorithm for interval-valued data and fuzzy-valued data[C].Proceedings of ICSP,2000.1551-1555.
  • 6Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53.
  • 7Yu Jian,Huang H K,Tian S F.An efficient optimality test for the fuzzy C-means algorithms[C].IEEE World Congress on Computational Intelligence,2000.86-91.
  • 8Paterlini S,Krink T.High performance clustering with differential evolution[C].Proceedings of the IEEE Congress on Evolutionary Computation,2004.2004-2011.
  • 9张洪刚,刘刚,郭军.FCM-VKNN聚类算法的研究[J].自动化学报,2002,28(4):631-636. 被引量:6
  • 10周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:177

共引文献61

同被引文献17

  • 1许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 2Huang Zhe-xue,Michael K N.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Transactions on Fuzzy Systems, 1999, 7 ( 4 ) : 446-452.
  • 3Pei Zhen-kui,Hua Xia,Han Jin-feng.The clustering algorithm based on particle swarm optimization algorithmiC]//2008 International Conference on Intelligent Computation Technology and Automation, 2008 : 148-151.
  • 4Tony H.Quantum computing:All introduction[J].Computing & Control Engineering Journal, 1996,10(3 ) : 105-112.
  • 5Narayanan A,Moore M.Quantum-inspired genetic algorithm[C]//Proc of IEEE International Conference on Evolutionary Computation.Piscataway : IEEE Press, 1996: 61-66.
  • 6Han Kuk-hyun,Kim Jong-hwan.Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation,2000: 1354-1360.
  • 7Forsati R,Meybodi M R,Mahdavi M.Hybridization of K-means and harmony search methods for Web page clustering[C]//Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,2008: 329-335.
  • 8Li M J,Michael K N,Cheung Yiu-ming,et al.Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters[J].IEEE Transactions on Knowledge and Data Engineering, 2008,20( 11 ) : 1519-1534.
  • 9Raju G,Thomas B,Tobgay S,et al.Fuzzy clustering methods in data mining:A comparative case analysis[C]//2008 International Conference on Advanced Computer Theory and Engineering,2008: 489-493.
  • 10Zhexue Huang. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[J] 1998,Data Mining and Knowledge Discovery(3):283~304

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部