摘要
Photodynamics of peripheral antenna complexes,light-harvesting complex (LH2) of Rhodobacter (Rb) Sphaeroides 601,was studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results reveal dramatic dynamical evolutions within B800 and B850 absorption bands of antenna complexes LH2. At excitation wavelength around 835 nm,a sharp photobleaching signal was observed which was assigned to the contribution of the two-exciton state,which was further confirmed by the power dependence measurement. Rate equations with eight-level scheme were used to calculate the population evolution in LH2 and the transient dynamics under femtosecond pulse excitation. The research results prove that not only the transition from ground state to one-exciton state but also that from one-exciton state to two-exciton state contribute to the photodynamics of B850.
Photodynamics of peripheral antenna complexes, light-harvesting complex (LH2) of Rhodobacter (Rb) Sphaeroides 601, was studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results reveal dramatic dynamical evolutions within B800 and B850 absorption bands of antenna complexes LH2. At excitation wavelength around 835 nm, a sharp photobleaching signal was observed which was assigned to the contribution of the two-exciton state, which was further confirmed by the power dependence measurement. Rate equations with eight-level scheme were used to calculate the population evolution in LH2 and the transient dynamics under femtosecond pulse excitation. The research results prove that not only the transition from ground state to one-exciton state but also that from one-exciton state to two-exciton state contribute to the photodynamics of B850.
基金
the National Natural Science Foundation of China (Grant No.10674031)
关键词
受激状态
动力学
方程式
探针技术
peripheral light harvesting complexes (LH2), Rb. Sphaeroides 601 excited state dynamics, femtosecond pump-probe, eight-level rate equations