摘要
考虑含三个自变量的Tricomi方程Tu=y(u_(x_1x_1)+u_(x_2x_2))+u_(yy)=0 (1)奇点为(a,b,0)的基本解.相对于两维的Tricomi方程,由于其奇性的增强,用通常的分布论计算基本解时,得到的积分发散,以致无法用该方法得到基本解,此时有必要引入散度积分主部来定义分布论中的基本解.我们利用特征线法在Cauchy主值意义下求得其基本解.
We give the fundamental solution of the Tricomi operator Tu=y(ux1x1+ux2x2)+uyy=0 (I It has stronger singularity than Tu = yuxx + Uyy =. 0. We indicate that it is necessary to introduce the principal part of Cauchy integral to define the fundamental solution in the theory of distribution.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期625-632,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家科技部973项目(2006CB805902)
国家自然科学基金(10531020)
教育部博士点基金(20050246001)
关键词
基本解
Tricomi方程
特征线法
fundamental solution
Tricomi equation
characteristic curves