期刊文献+

Tricomi算子的基本解

The Fundamental Solution for the Tricomi Operator
原文传递
导出
摘要 考虑含三个自变量的Tricomi方程Tu=y(u_(x_1x_1)+u_(x_2x_2))+u_(yy)=0 (1)奇点为(a,b,0)的基本解.相对于两维的Tricomi方程,由于其奇性的增强,用通常的分布论计算基本解时,得到的积分发散,以致无法用该方法得到基本解,此时有必要引入散度积分主部来定义分布论中的基本解.我们利用特征线法在Cauchy主值意义下求得其基本解. We give the fundamental solution of the Tricomi operator Tu=y(ux1x1+ux2x2)+uyy=0 (I It has stronger singularity than Tu = yuxx + Uyy =. 0. We indicate that it is necessary to introduce the principal part of Cauchy integral to define the fundamental solution in the theory of distribution.
作者 屈爱芳
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第4期625-632,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家科技部973项目(2006CB805902) 国家自然科学基金(10531020) 教育部博士点基金(20050246001)
关键词 基本解 Tricomi方程 特征线法 fundamental solution Tricomi equation characteristic curves
  • 相关文献

参考文献9

  • 1Bavros-Neto J., An introduction to the theory of Distributions, Inc. New York:Marcel Decher, 1973; in Chinese 1981.
  • 2HOrmander L., The analysis of linear partial differential equations of second order, New York: Springer-Verlag, 1983.
  • 3Bers L., Mathematical aspects of subsonic and transonic gas dynamics, New York: Surveys Appl. Math. 3, Wiley, 1958.
  • 4Barros-Neto J., Gelfand I. M., Fundamental solutions for the tricomi operator, Duke Math. J., 1999, 98(3): 465-483.
  • 5Barros-Neto J., Gelfand I. M., Fundamental solutions for the tricomi operator, Ⅱ, Duke Math. J., 2002, 111(3): 561-584.
  • 6Chen S. X., The fundamental of the keldysh operator, to appear.
  • 7Chen S. X., Introduction to modern partial differential equations, Beijing: Science Press, 2005.
  • 8Xu N., Yin H. C., The weighted W2'p estimate on the solution of the Gellerstedt equation in the upper half space, Analysis in Theory and Applications, 2005,21(2): 176-187.
  • 9Courant R., Helbert D., Methods of mathematical physics, Vol(Ⅱ), New York: Interscience Publishers, 1962.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部