摘要
设r是大于1的正奇数,m是正偶数,V(r)+U(r)(-1)^(1/2)=(m+(-1)^(1/2))~r.本文证明了:当a=|V(r)|,b=|U(r)|,c=m^2+1时,如果r≡5(mod8),m>r^2且r<11500或者m>2r/π且r>11500,则方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,r).
Let r be a positive odd integer with r 〉 1, and let m be a positive even integer. Further move let a = |V(r)|, b = |g(r)| and c = m^2 + 1, where V(r) + V(r)v√-1 = (m + √-1)^r. In this paper we prove that if r ≡ 5 (mod8) and either m 〉 r^2, r 〈 11500 or m 〉 2r/π, r 〉 11500, then the equation a^x + b^y = c^z has only the positive integer solution (x, y, z) = (2, 2, r).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期677-684,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10771186)
广东省自然科学基金项目(06029035)