期刊文献+

Diophantine方程组a^2+b^2=c^r和a^x+b^y=c^z的一点注记

A Note on the Diophantine System a^2+b^2=c^r and a^x+b^y=c^2
原文传递
导出
摘要 设r是大于1的正奇数,m是正偶数,V(r)+U(r)(-1)^(1/2)=(m+(-1)^(1/2))~r.本文证明了:当a=|V(r)|,b=|U(r)|,c=m^2+1时,如果r≡5(mod8),m>r^2且r<11500或者m>2r/π且r>11500,则方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,r). Let r be a positive odd integer with r 〉 1, and let m be a positive even integer. Further move let a = |V(r)|, b = |g(r)| and c = m^2 + 1, where V(r) + V(r)v√-1 = (m + √-1)^r. In this paper we prove that if r ≡ 5 (mod8) and either m 〉 r^2, r 〈 11500 or m 〉 2r/π, r 〉 11500, then the equation a^x + b^y = c^z has only the positive integer solution (x, y, z) = (2, 2, r).
作者 乐茂华
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第4期677-684,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10771186) 广东省自然科学基金项目(06029035)
关键词 指数DIOPHANTINE方程 广义FERMAT猜想 二次剩余 exponential Diophantine equation generalized Fermat conjecture quadraticresidue
  • 相关文献

参考文献10

  • 1Le M. H., On the Terai's conjecture concerning the exponential diophantine equation a^x+b^Y = C^z, Acta Mathematica Sinica, Chinese Series, 2003, 46(2): 245-250.
  • 2Mauldin R. D., A generalization of Fermat's last thoerem: The Beal conjecture and prize problem, Notices Amer. Math. Soc., 1997, 44(11): 1436-1437.
  • 3Cao Z. F., Dong X. L., An application of a lower bound for linear forms in two logarithms to the Terai- Jesmanowicz conjecture, Acta Arith., 2003, 110(2): 153-164.
  • 4Hu Y. Z., Yuan P. Z., On the exponential diophantine equation a^x + ^by = c^z, Acta Mathematica Sinica, Chinese Series, 2005, 48(6): 1175-1178.
  • 5Mignotte M., A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith., 1998, 86(1): 101-111.
  • 6Bilu Y., Hanrot G., Voutier P. M., (with an appendix by M. Mignotte), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 2001, 539: 75-122.
  • 7Voutier P. M., Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 1995, 64: 869-888.
  • 8Lidl R., Niederreiter H., Finite fields, Massachusetts: Addison-Wesley, Reading, 1983.
  • 9Mordell L .J., Diophantine equations, London: Academic Press, 1969.
  • 10Darmon H., Merel L., Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 1997, 490: 81-100.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部