期刊文献+

自然增长下非线性退化椭圆方程的优化Hlder连续指数

Sharp Hlder Exponents for Nonlinear Degenerate Elliptic Equations with the Natural Growth
原文传递
导出
摘要 利用Moser-Nash迭代和稠密引理,得到了在自然增长下的非线性退化椭圆方程有界弱解具有某一Hlder指数的正则性;在已知数据的进一步正则性下,建立了具有任意γ满足0≤γ<κ的优化Hlder连续性指数,其中κ是A-调和函数的局部Hlder连续指数. It's established that the bounded weak solution of a class of nonlinear degenerate elliptic equations with the natural growth belongs to the HSlder space with some Hoelder exponent by way of Moser-Nash's iterating argument and a density lemma. Then, we further obtain that each bounded weak solution is of sharp Hoelder exponent with any γ : 0 ≤ γ 〈 κ under the additional data regularity assumptions, where κ is just as the local HSlder index of A-harmonic functions.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第4期735-748,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10671174,10671022) 台州市科技资助项目(063KY08)
关键词 退化椭圆方程 自然增长条件 A-调和函数 degenerate elliptic equations natural growth A-harmonic functions
  • 相关文献

参考文献23

  • 1Budney L,, Iwaniec T., Removability of singularities of A-harmonic functions, Differential and Integral Equations, 1999, 12: 261-274.
  • 2Duzaar F., Mingione G., Regularity for degenerate elliptic problems via p-harmonic approximation, Preprint Dip. Mat. Univ. Parma, No. 326, May 2003.
  • 3Heinonen J., Kilpelainen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, 1993.
  • 4Heinonen J., Kilpelainen T., A-superharmonic functions and supersolutions of degenerate elliptic equations, Ark. Mat., 1988, 26: 87-105.
  • 5Iwaniec T., Sbordone C., Weak minima of variational integrals, J. Reine Angew Math., 1994, 454: 143-161.
  • 6Kilpelaiinen T., Maly J., The wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 1994,172: 137-161.
  • 7Koskela P., Martio O., Removability theorems for solution of degenerate elliptic PDE, Ark. Mat., 1993, 31: 339-353.
  • 8Zheng S. Z., Regualrity results for the generalized Beltrami systems,Acta Mathematica Sinica, English Series, 2004, 20(2): 193-205.
  • 9Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press (Ann. Math. Stud.), 105, 1983.
  • 10Ladyzhenskaya O. A., Ural'tseva N. N., Linear and quasilinear elliptic equations, Beijing: Science Press House,1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部