摘要
利用Moser-Nash迭代和稠密引理,得到了在自然增长下的非线性退化椭圆方程有界弱解具有某一Hlder指数的正则性;在已知数据的进一步正则性下,建立了具有任意γ满足0≤γ<κ的优化Hlder连续性指数,其中κ是A-调和函数的局部Hlder连续指数.
It's established that the bounded weak solution of a class of nonlinear degenerate elliptic equations with the natural growth belongs to the HSlder space with some Hoelder exponent by way of Moser-Nash's iterating argument and a density lemma. Then, we further obtain that each bounded weak solution is of sharp Hoelder exponent with any γ : 0 ≤ γ 〈 κ under the additional data regularity assumptions, where κ is just as the local HSlder index of A-harmonic functions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期735-748,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10671174,10671022)
台州市科技资助项目(063KY08)
关键词
退化椭圆方程
自然增长条件
A-调和函数
degenerate elliptic equations
natural growth
A-harmonic functions