期刊文献+

Banach空间有一致正规结构的充分条件 被引量:1

Some Sufficient Conditions for Uniform Normal Structure in Banach Spaces
原文传递
导出
摘要 建立了弱收敛序列常数关于R(1,X)和广义von Neumann-Jordan常数(广义James常数)估计式.由此得到了两个Banach空间具有一致正规结构的充分条件,推广和改进了相应的一些结论. The estimate of the weakly convergent sequence coefficient concerning the coefficient R(1, X) and the generalized von Neumann-Jordan (James) constant is estibalished. These estimates enable us to obtain two sufficient conditions for normal structure, which extend and improve some known results.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第4期761-768,共8页 Acta Mathematica Sinica:Chinese Series
基金 教育部科技司重点项目(208081) 河南省教育厅自然科学基金(2008A110012)
关键词 弱收敛序列常数 广义James常数 广义von Neumann—Jordan常数 weakly convergent sequence coefficient generalized James constant generalized von Neumann-Jordan constant
  • 相关文献

参考文献15

  • 1Gao J., Lau K. S:, On two classes Banazh spaces with uniform normal structure, Studia Math. 1991, 99: 41-56.
  • 2Clarkson J. A., The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math., 1937, 38: 114-115.
  • 3Kato M., Maligranda L., Takahashi Y., On James and Jordan-von Neumann constants and normal structure coefficient of Banazh spaces, Studia Math., 2001, 144: 275-295.
  • 4Gobel K., Kirk W. A., Topics in metric fixed point theory, Cambridge: Cambridge University Press, 1990.
  • 5Dhompongsa S., Kaewkhao A., Tasena S., On a generalized James constant, J. Math. Anal. Appl., 2003, 285: 419-435.
  • 6Dhompongsa S., Piraisangjun P. and Saejung S., On a generalized Jordan-von Neumann constants and uniform normal structure, Bull. Austral. Math. Soc., 2003, 67: 225-240.
  • 7Dhompongsa S., Domlnguez-Benavides T., Kaewcharoen A., Kaewkhao A., Panyanak B., The Jordan-von Neumann constants and fixed points for multivalued nonexpansive mappings, J. Math. Anal. Appl. 2006, 320: 916-927.
  • 8Saejung S., On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, J. Math. Anal. Appl., 2006, 323: 1018-1024.
  • 9Bynum W. L., Normal structure coefficients for Banach spaces, Pacific. J. Math., 1980, 86: 427-436.
  • 10Sims B., Smyth M. A., On some Banach space properties sufficient for weak normal structure and their permanence properties, Trans. Amer. Math. Soc., 1999, 351: 497-513.

同被引文献7

  • 1GAO J. On some geometric parameters in Banach spaces [J]. J Math Anal Appl,2007,334:114-122.
  • 2GAO J, I,AU K S. On two classes of Banach spaces with normal structure[J]. Studia Math, 1991, 99 (1) :41- 56.
  • 3GAO J. A Pythagorean approach in Banach spaces [ J ]. J Inequal Appl, 2006, ( 2006 ) : 1-11.
  • 4SIMS B. A class of spaces with weak normal structure [J]. Bull Austral Math Soc,1994, 50:523-528.
  • 5MELADO J A, FUSTER E L, SAEJUNG S. The yon Neumann-Joran constant, weak orthogo-nality and normal structure in Banach spaces [ J ]. Proc Amer Math Soc, 2006,134(2) :355-364.
  • 6MILMAN V D. Geometric theory of Banach spaces [ J ]. Russian Math Surveys, 1971,26:79-163.
  • 7HE C, CUI Y. Some properties concerning Milman's moduli [J].J Math Anal Appl,2007,329:1 260-1 272.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部