期刊文献+

冯.诺依曼代数交叉积的一点注记 被引量:1

A Note on the Crossed Product of von Neumann Algebras
原文传递
导出
摘要 设α是可数离散群G和H的半直积G■_σH在冯·诺依曼代数M上的作用,则β_h=α_((e,h))AdU_h定义了群H在冯·诺依曼代数交叉积M■_αG上的作用β.本文证明了交叉积冯·诺依曼代数M■_α(G■_σH)与(M■_αG)■_βH是*-同构的,因此在一定条件下,冯·诺依曼代数的交叉积满足结合律. Let α be an action of the semi-direct product G ×σ H of countably discrete groups G and H on yon Neumann algebra M. Then βh = α(e,h)× AdUh is an action of H on the yon Neumann algebra crossed product M×αG. We show that M×α(G×σH) is *-isomorphic to ( M×α G) ×β H, therefore the crossed product of yon Neumann algebras has the associative law.
作者 吴文明 袁巍
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第4期803-808,共6页 Acta Mathematica Sinica:Chinese Series
关键词 半直积 可数离散群 交叉积 冯.诺依曼代数 semi-direct product countably discrete groups crossed product von Neumann algebras
  • 相关文献

参考文献10

  • 1Murray F. J., von Neumann J., On rings of operator, Ann. Math., 1936, 37: 116-229.
  • 2von Neumann J., On rings of operator III, Ann. Math., 1940, 41: 94-161.
  • 3Turumaru T., Crossed products of operator algebras, Tohoku Math. J., 1958, 10: 355-365.
  • 4Nakamura M., Takeda Z., On some elementary properties of the crossed product of von Neumann algebras, Proc. Japan Acad., 1958, 34: 489-494.
  • 5Connes A., A factor not anti-isomorphic to itself, Ann. Math., 1975, 101: 536-554.
  • 6Takesaki M., Duality for crossed products and the structure of von Neumann algebras of type Ⅲ, Acta Math., 1973, 131: 249-310.
  • 7Li B: R., Introduction to operator algebras, Singapore: World Sci., 1992.
  • 8Stratila S., Modular theory in operator algebras, Tunbridge Wells: Abacus Press, 1981.
  • 9Daele A. Van., Continuous crossed products and type Ⅲ von Neumann algebras, Cambridge: Camb. Univ. Press, 1978.
  • 10von Neumann J., Zur algebras der funktiorationen und theorie der normalen operatorn, Math. Ann., 1929- 1930, 102: 370-427.

同被引文献6

  • 1杨芳.关于离散群的半直积与von Neumann代数的交叉积[J].宜宾学院学报,2006,6(12):13-14. 被引量:1
  • 2TURUMARU T. Crossed product of operator algebras[J]. Tohoku Math, 1958, 10(3):355-365. doi:lO.2748/tmjl1178244669.
  • 3NAKAMURA M, TAKEDA Z. On some elementary properties of the crossed products of yon Neumann algebras[J]. Proc Japan Acad, 1958,34(8):489-494. doi:10.3792/pja/1195524559.
  • 4NAKAMURA M, TAKEDA Z. A Galois theory for finite factors[J]. Proc Japan Acad, 1960, 36(5): 258-260. doi: 10.3792/pja/ 1195524026.
  • 5SUZUKI N. Crossed product of rings of operator[J]. Tohoka Math, 1959,11(1): 113-124. doi:10.2748/tmj/1178244632.
  • 6DOPLICHER S, KASTLER D, ROBINSON D. Covariane algebras in field theory and statistical mechanics[J].Comm Math Phys, 1966, 3(1):1-28.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部