摘要
设α是可数离散群G和H的半直积G■_σH在冯·诺依曼代数M上的作用,则β_h=α_((e,h))AdU_h定义了群H在冯·诺依曼代数交叉积M■_αG上的作用β.本文证明了交叉积冯·诺依曼代数M■_α(G■_σH)与(M■_αG)■_βH是*-同构的,因此在一定条件下,冯·诺依曼代数的交叉积满足结合律.
Let α be an action of the semi-direct product G ×σ H of countably discrete groups G and H on yon Neumann algebra M. Then βh = α(e,h)× AdUh is an action of H on the yon Neumann algebra crossed product M×αG. We show that M×α(G×σH) is *-isomorphic to ( M×α G) ×β H, therefore the crossed product of yon Neumann algebras has the associative law.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期803-808,共6页
Acta Mathematica Sinica:Chinese Series
关键词
半直积
可数离散群
交叉积
冯.诺依曼代数
semi-direct product
countably discrete groups
crossed product
von Neumann algebras