期刊文献+

一种新型生物聚合物Ss的流变学性质及成胶特性 被引量:4

Rheological and Gelling Properties of a Novel Biopolymer Ss
下载PDF
导出
摘要 本文对一种新型生物聚合物Ss的流变学性质及成胶特性进行了研究。该聚合物的流变学性质与黄原胶类似,具有高粘性、假塑性及耐盐性。0.6%以上的Ss溶液加热(≥75℃)并冷却至室温可形成凝胶,加入金属离子可以改变其成胶所需的最低聚合物浓度及所成凝胶的性质。利用质构分析(TPA)方法,研究了不同聚合物浓度和钙离子浓度下凝胶的质构性质。钙离子的加入能促进凝胶的形成,凝胶的硬度、弹性、内聚性随聚合物浓度及钙离子浓度的增加而增大,但大于最适钙离子浓度时,硬度、弹性及内聚性均有所下降。 The rheological and gelling properties of a novel biopolymer Ss have been investigated. Like Xanthan Gum, this polymer was distinguished by its high viscosity, pseudoplasticity and salt-tolerance. 0.6%(W/V) Ss concentration transformed to gel by heating (≥75℃) and then cooling to room temperature. Adding metal ions changed the critical concentration of gelling as well as the textural characters of the gel forming. The effects of different polymer and calcium ion concentrations on the textural properties were examined using instrumental Texture Profile Analysis (TPA). Adding calcium ions enhanced sol-gel transition. Hardness, springiness and cohesiveness increased with increasing polymer and calcium ion concentration, but decreased when surpassed a critical calcium ion concentration.
出处 《微生物学通报》 CAS CSCD 北大核心 2008年第6期866-871,共6页 Microbiology China
基金 国家自然科学基金项目(No.50674058)资助
关键词 生物聚合物 流变学 凝胶 TPA测试 Biopolymer, Rheology, Gel, TPA test
  • 相关文献

参考文献12

  • 1Baviere M, Basic concepts in enhanced oil recovery processes. London and New York: Published by ELSEVIER APPLIED SCIENCE, 1991, pp. 5-45.
  • 2Barbara Katzbauer, Properties and applications of xanthan gum. Polymer Degradation and Stability, 1998, 59: 81-84.
  • 3Bourne MC. Food Texture and viscosity. New York: Academic Press, 1982, pp. 44-117.
  • 4Garca-Ochoa F, Santos VE, Casas JA, et al. Xanthan gum. production, recovery, and propertiesl Biotechnology Advances, 2000, 18(7): 549-5791
  • 5Baird JK, Sandford PA, Cottrel IW. Industrial application of some new microbial polysaccharides. Biotechnology, 1983, 1: 778-783.
  • 6张维杰.复合多糖生化研究技术.上海:上海科学技术出版社,1987,PP.3-39.
  • 7Sanderson GR. Food gels. New York: Elsevier Science Publishing Co Inc, 1990, pp. 201-232.
  • 8Tang J, Lelievre J, Tung MA, et al. Polymer and ion concentration effects on gellan gel strength and strain. Journal of Food Science, 1994, 59: 216-220.
  • 9Tang J, Tung MA, Zeng Y. Mechanical properties of gellan gels in relation to divalent cations. Journal of Food Science, 1994, 60: 748-752.
  • 10Tang J, Tung MA, Zeng. Y. Compression strength and deformation of gellan gels formed with mono- and divalent cations. Carbohydrate Polymers, 1996, 29(1): 11-16.

共引文献2

同被引文献56

  • 1李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,17(4):523-526. 被引量:17
  • 2Janeyii W, Hsiufeng Y. Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate. Process Biochem, 2007, 42: 1114-1123.
  • 3Soudmand A, Ayatollahi S, Mohabatkar H. The in situ microbial enhanced oil recovery in fractured porous media. J Pet Sci Eng, 2007, 58: 161-172.
  • 4Baird JK, Sandford PA, Cottrel IW. Industrial application of some new microbial polysaccharides. Biotechnol, 1983, 1: 778-783.
  • 5Banik RM, Kanari B, Upadhyay S. Exopolysaccharide of the gellan family: prospects and potential. World J Microbiol Biotechnol, 2000, 16: 407-414.
  • 6Pollock TJ. Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol, 1993, 139: 1939-1945.
  • 7Francois J, Julie D. Multiple sequence alignment with Clustal X. Trends Biochem Sci, 1998, 23: 403-405.
  • 8Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett, 1990, 66: 199-202.
  • 9Busse H J, Kampfer P, Denner EBM. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol, 1999, 23: 242-251.
  • 10Denner EBM, Paukner S, Kampfer P, et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. International Journal of Systematic and Evolutionary Microbiology, 2001,51 : 827 - 841.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部