摘要
利用相对熵选择阈值和边缘检测提出一种图象分割算法。其主要思想是通过相对熵来选择最佳阈值,然后用任何一种边缘检测对图象进行分割。将所提出的算法和基于局部熵的算法分别用于现场颗粒物料图象的分割,实验结果表明,该算法优干基于局部熵的图象分割算法。
A algorithm of image segmentation is proposed based on relative entropy selection thresholding and edge detection. The main idea of this algorithm is to find a threshold by using relative entropy, and then any edge detection is used to segment image. In order to see the performance of the proposed algorithm. the local entropy algorithm and it are used to segment the plant scene particle material image , respectively. Some ex-perimental results are provided to show the proposed algorithm to be superior to the local entropy-based al-gorithm of image segmentation.
出处
《控制与决策》
EI
CSCD
北大核心
1997年第5期581-584,601,共5页
Control and Decision
关键词
图象分割
相对熵
边缘检测
算法
图象识别
image segmentation, co-occurrence matrix, relative entropy, local entropy, edge detection