期刊文献+

“超—次线性”二阶椭圆型方程组的正解 被引量:2

Positive solutions for super-sublinear elliptic system of second order
下载PDF
导出
摘要 基于乘积锥上的不动点指数乘积公式及不动点指数理论,获得了一类"超—次线性"二阶椭圆型方程组正解的存在性,推广了以前的相关结果. Based on the product formula for the fixed point index in product cone and the fixed point index theory, the existence of positive solutions for a super-sublinear elliptic system of second order was established, extending the previous relevant results.
作者 程锡友
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期113-117,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10471056) 江苏省教育厅基金(06kJD110092)资助.
关键词 正解 椭圆型方程组 不动点指数 positive solution elliptic system fixed point index
  • 相关文献

参考文献8

  • 1CHENG X, ZHONG C. Existence of positive solutions for a second-order ordinary differential system[J]. J Math Anal Appl, 2005, 312(1): 14-23.
  • 2DE FIGUEIREDO D G. Semilinear elliptic systems[C]//AMBROSETTI A, CHANG K C, EKELAND I. Proc of the Second School on Nonlinear Functional Analysis and Applications to Differential Equations. Singapore: World Scientific Publishing Company, 1998: 122-152.
  • 3ALVES C O, DE FIGUEIREDO D G. Nonvariational elliptic systems[J]. Discrete and Continuous Dynamical Systems, 2002, 8(2): 289-302.
  • 4CHENG X, ZHONG Co Existence of three nontrivial solutions for an elliptic system[J]. J Math Anal Appl, 2007, 327(2): 1 420-1 430.
  • 5GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. 2nd ed. Berlin: Springer-Verlag, 1983: 235-241.
  • 6AMANN H. Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Review, 1976, 18(1): 620-709.
  • 7GIDAS B, SPRUCK J. A priori bounds for positive solutions of nonlinear elliptic equations[J]. Comm in Partial Diff Eqs, 1981, 6(8): 883-901.
  • 8马巧珍.次线性半正多点边值问题的正解(英文)[J].兰州大学学报(自然科学版),2003,39(4):5-7. 被引量:3

二级参考文献4

  • 1Guo D, Lakshmikantham V. Nonlinear Problems in Attract Cones[M]. San Diego :Academic Press, 1988.
  • 2Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order differential equation[J]. J Math Anal Appl, 1992,168 : 540-551.
  • 3Ma R.Multiplicity of positive solutions for secondorder three-point boundary value problems[J]. Comp Math Appl,2000,40:193-204.
  • 4Feng W,Webb J R L. Solvability of three-point nonlinear boundary value problem at resonance[J].Nonlinear Analysis TMA, 1997,30(6) :467-480.

共引文献2

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部