摘要
本文提出一种动态线性或非线性系统的神经网络逆模型辨识结构.并引出两种PID与神经网络逆模型相结合的自适应控制方案.神经网络模型采用基于U-D分解卡尔曼滤波学习算法(UDK)的动态前向多层同.仿真结果表明了所述辨识方案的有效性及特点.
A structure for inverse identification of dynamic linear or non-linear system usingneural network is presented. Two types of closed-loop control schemes that combine the neuralnetwork inverse model with PID are proposed. The dynamic feed forward multilayer network for identification and control is trained by a novel learning algorithm based on U-D factorizationKalman filter (UDK). The potentials of the proposed structure and schemes are demonstrated bysimulation studies.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1997年第6期829-836,共8页
Control Theory & Applications