期刊文献+

BIOLUMINESCENCE TOMOGRAPHY:BIOMEDICAL BACKGROUND,MATHEMATICAL THEORY,AND NUMERICAL APPROXIMATION 被引量:1

BIOLUMINESCENCE TOMOGRAPHY:BIOMEDICAL BACKGROUND,MATHEMATICAL THEORY,AND NUMERICAL APPROXIMATION
原文传递
导出
摘要 Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT. Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2008年第3期324-335,共12页 计算数学(英文)
基金 NIH grant EB001685 Mathematical and Physical Sciences Funding Program fund of the University of Iowa
关键词 Biomedical imaging Bioluminescence tomography (BLT) Inverse problem Regularization Numerical approximation Error analysis Biomedical imaging, Bioluminescence tomography (BLT), Inverse problem,Regularization, Numerical approximation, Error analysis
  • 相关文献

参考文献30

  • 1R. Aronson, Extrapolation distance for diffusion of light, in Photon Migration and Imaging in Random Media and Tissues (Proc. SPIE 1888), ed. B. Chance and R. R. Alfano, 1993, 297-305.
  • 2S.R. Arridge, Optical tomography in medical imaging, Inverse Probl., 15 (1999), R41-R93.
  • 3S.R. Arridge and W.R.B. Lionheart, Nonuniqueness in diffusion-based optical tomography, Opt. Lett., 23 (1998), 882-884.
  • 4K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, second edition, Springer-Verlag, New York, Texts in Applied Mathematics, Volume 39, 2005.
  • 5M.C. Case and P.F. Zweifel, Linear Transport Theory, Addison-Wesley, NY, 1967.
  • 6X.-L. Cheng, R.-F. Gong, and W. Han, A generalized mathematical framework for bioluminescence tomography, Comput. Method. Appl. M., 197 (2008), 524-535.
  • 7W.-X. Cong. G. Wang, D. Kumar. Y. Liu, M. Jiang, L.-H. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, A. Cong, A practical reconstruction method for bioluminescence tomography, Opt. Express, 13 (2005), 6756-6771.
  • 8C.H. Contag and B.D. Ross, It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology, J. Magn. Reson. Imaging, 16 (2002), 378-387.
  • 9R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 6, Evolution Problems II, Springer, Berlin, 2000.
  • 10A. El Badia, Inverse source problem in an anisotropic medium by boundary measurements, Inverse Probl., 21 (2005), 1487-1506.

同被引文献14

  • 1Wang G, Shen H, Numar D, et al. The first biolu- minescence tomography system for simultaneous acquisition of multi-view and multi-spectral data[J]. In- ternational Journal of Biomedical Imaging, 2096, Article ID 58601, 8.
  • 2pages. Wang G, Shen H O, Cong W X, etal. Temperature- modulated biolumine scence tomography[J]. Optics Express, 2006, 14.. 7852-7871.
  • 3Wang G, Cong W X, Shen H, et al. Overview of bi- oluminescence tomography: A new molecular maging modality[J]. Frontiers in Bioscience, 2008, 13: 1281- 93.
  • 4Cheng X, Gong R, Hah W. A new general mathe- matical framework for bioluminescence tomography [J]. Comput Methods Appl Mech Engrg, 2008, 197: 524-535.
  • 5Engl H W, Hanke M, Neubauer A. Regulazization of inverse problems[M]. Dordrecht: Kluwer Aca- demic Publishers Group, 1996.
  • 6Hah W, Cong W X, Wang G. Mathematical theory and numerical analysis of bioluminescence tomography[J]. Inverse Problems, 2006, 22: 1659-1675.
  • 7Hah W, Wang G. Theoretical and numerical analysis on multispectral bioluminescence tomography [J]. IMA J Appl Math, 2007, 72.: 1-19.
  • 8Isakov V. Inverse problems for partial differential equations[M]. Second Edition. New York: Spring- er, 2006.
  • 9Tikhonov A, Arsenin V. Solutions of ill-posed prob lems[M]. Washington, D. C. : John Wiley 85 Sons, 1977.
  • 10Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography[J]. Med Phys, 2004 : 31: 2289-2299.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部