摘要
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.
基金
the National Basic Research Program of China under the grant 2005CB321701
the National Natural Science Foundation of China under the grant 10531080
Beijing Natural Science Foundation under the grant 1072009