摘要
The author will prove that the group ^2Dp(3) can be uniquely determined by its order components, where p ≠ 2^m + 1 is a prime number, p ≥ 5. More precisely, if OC(G) denotes the set of order components of G, we will prove OC(G) = OC(^2Dp(3)) if and only if G is isomorphic to ^2Dp(3). A main consequence of our result is the validity of Thompson's conjecture for the groups under consideration.
The author will prove that the group ^2Dp(3) can be uniquely determined by its order components, where p ≠ 2^m + 1 is a prime number, p ≥ 5. More precisely, if OC(G) denotes the set of order components of G, we will prove OC(G) = OC(^2Dp(3)) if and only if G is isomorphic to ^2Dp(3). A main consequence of our result is the validity of Thompson's conjecture for the groups under consideration.
基金
the Universtiy of Tehran