期刊文献+

A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE 被引量:12

A PRIORI ERROR ESTIMATE AND SUPERCONVERGENCE ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM OF BILINEAR TYPE
原文传递
导出
摘要 In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems. In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems.
出处 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第4期471-487,共17页 计算数学(英文)
基金 the National Basic Research Program under the Grant 2005CB321703 the NSFC under the Grants 10571108 and 10441005 the Research Fund for Doctoral Program of High Education by China State Education Ministry under the Grant 2005042203
关键词 Bilinear control problem Finite element approximation SUPERCONVERGENCE Apriori error estimate A posteriori error estimator. Bilinear control problem, Finite element approximation, Superconvergence, Apriori error estimate, A posteriori error estimator.
  • 相关文献

参考文献29

  • 1Robert A. Adams, Sobolev Spaces, Academic Press, 1978.
  • 2W. Alt, On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Opt., 12 (1984), 15-27.
  • 3W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optmi., 27 (1989), 718-736.
  • 4N. Arada, E. Casas and F. TrSltzsch, Error estimates for a semilinear elliptic control problem, Comput. Optim. Appl., 23:2 (2002), 201-229.
  • 5E. Casas, M. Mateos and F. TrSltzsch, Necessary and sufficient optimality conditions for optimization problems in function spaces and applications to control theory, ESIAM, Proceedings, 13 (2003), 18-30.
  • 6E. Casas and F. Troltzsch, Second order necessary and sufficient optimality conditions for opti- mization problems and applications to control theory, SIAM J. Optimiz., 13:2 (2002), 406-431.
  • 7P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 8R.E. Ewing, M.-M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772-787.
  • 9F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.
  • 10T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313-328.

同被引文献26

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部