摘要
In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems.
In this paper, we investigate a priori error estimates and superconvergence properties for a model optimal control problem of bilinear type, which includes some parameter estimation application. The state and co-state are discretized by piecewise linear functions and control is approximated by piecewise constant functions. We derive a priori error estimates and superconvergence analysis for both the control and the state approximations. We also give the optimal L^2-norm error estimates and the almost optimal L^∞-norm estimates about the state and co-state. The results can be readily used for constructing a posteriori error estimators in adaptive finite element approximation of such optimal control problems.
基金
the National Basic Research Program under the Grant 2005CB321703
the NSFC under the Grants 10571108 and 10441005
the Research Fund for Doctoral Program of High Education by China State Education Ministry under the Grant 2005042203