摘要
构造了一个具有能量正交形函数空间的12参数三角形板元,其单元刚度矩阵由两部分组成:Ke=Krc+Kh,其中Krc只和形函数空间的常应变模态有关,Kh由高阶模态决定.证明了它们对4阶问题在任何剖分形式下均收敛.其插值误差为O(h2),优于Bergan元.
A 12-parameter triangle plate element having energy-orthogonal shape function space is presented. The stiffness matrix Ke = Krc + Kh of the element is block diagonal, where Krc depends only onconstant strain modes of shape function space and Kh is determind by high order modes. It is proved that the element is convergent for 4-order plate problem with any mesh form. The interpolation error of energy norm is of O (h^2) better than that of Bergan element.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
北大核心
2008年第3期239-242,共4页
Journal of Jinan University(Natural Science & Medicine Edition)
基金
国家自然科学基金资助(10771198
10590353)
河南省教育厅自然科学基金资助(2008A110002)
河南大学自然科学基金资助(06YBZR027)
关键词
能量正交元
单元刚度矩阵
双参数法
energy-orthogonal triangular plate element
stiffness matrices
double set parameter method