期刊文献+

Z2k上的二次剩余码 被引量:5

Quadratic Residue Codes over Z2k
原文传递
导出
摘要 Hammons利用Gray映射把一些具有良好纠错能力的非线性码与Z_4上的线性码建立了联系.本文进一步对更一般的环上的循环码进行研究,我们定义了Z_(2k)上一类特殊的循环码-二次剩余码,证明了它的存在性及个数,并且证明了它与域上的二次剩余码有类似的性质. In this paper, we define a particular family of cyclic codes-quadratic residue codes over Z2k, and show the existence and quantity of these codes. We also show that they have certain good properties which are analogous in many respects to properties of quadratic residue codes over a field.
出处 《应用数学学报》 CSCD 北大核心 2008年第2期257-265,共9页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10171042) 辽宁省教育厅高校科研项目(05L210)资助项目.
关键词 Z2k上的循环码 Z2k上的二次剩余码的幂等元 Z2k上的二次剩余码 cyclic codes over Z2k the idempotent generator of quadratic residue codes over Z2k quadratic residue codes over Z2k
  • 相关文献

参考文献5

  • 1Calderbank A R, P V Kumar J R, Calderbank A R, Sloane N J A, Sole P. The Z4-1inearity of Kerdock, Preparata, Goethals, and Related Codes. IEEE Trans. Inform. Theory, 1994, 40:301-319
  • 2Pless V, Qian Z. Cyclic Codes and Quadratic Residue Codes over Z4. IEEE Trans. Inform. Theory, 1996, 42:1594-1600
  • 3Mei Hui Chiu. Z8-cyclic Codes and Quadratic Residue Codes. Advances in Applied Mathematics, 2000, 25:12-33
  • 4Tan Xiaoqing. Quadratic Residue Codes over Z16. Journal of Mathematical Research and Exposition, 2005, 25:739-748
  • 5Pan Chengdong, Pan Chengbia~. Elementary Number Theory. Bejing: Peking University Press, 1999, 157-181

同被引文献39

  • 1谭晓青.多项式剩余类环Z_(2m)[x]/(x^p-1)上的幂等元[J].暨南大学学报(自然科学与医学版),2006,27(3):356-362. 被引量:1
  • 2谭晓青.Z_(16)环上的二次剩余码[J].Journal of Mathematical Research and Exposition,2005,25(4):739-748. 被引量:2
  • 3HAMMONS A R, KUMAR P V, CALDERBANK A R, etal. The Z4-1inearity of Kerdock, Preparata, Goethals,and related codes [J]. IEEE Trans Inform Theory,1994, 40(2):301-319.
  • 4NECHAEV A A. Kerdock code in a cyclic form[J]. Dis- crete Math Appl, 1991,1 (4) :365-368.
  • 5BONNECAZE A, SOLE P, CALDERBANK A R. Qua- ternary quadratic residue codes and unimodular lattices [J]. IEEE Trans Inform Theory, 1995, 41 (2):366-377.
  • 6PLESSV S, QIAN Zhong-qing. Cyclic codes and quad- ratic residue codes over Z4 [J]. IEEE Trans Inform Theo- ry, 1996,142 (5) :1594-1600.
  • 7CHIU M H, STEPHEN S T, Yau Yung Yu. Zs-Cyclic codes and quadratic residue codes [J]. Advance in Ap- plied Mathematics, 2000, 25 (1) : 12-33.
  • 8KANWAR P. Quadratic residue codes over the integers modulo qm [J]. Contemp Math, 2000,259 : 299-312.
  • 9CALDERBANK AR., SLOANE N J A. Modular andp-adic cyclic codes[J]. Des Codes Cyptogr, 1995, 6(1) :21-35.
  • 10Macwilliams F J, Sloane N J A. The theory of error correcting codes[M]. Amsterdam, the Netherlands: North-Holland, 1977:480-520.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部