期刊文献+

基于模拟退火算法的无网格节点生成技术 被引量:4

Simulated-annealing-based algorithm for generating point sets for meshless methods
原文传递
导出
摘要 为克服目前无网格法布点技术仅适用于特定问题的缺点,在分析节点生成技术数学本质的基础上,提出了一种基于模拟退火算法的无网格节点生成技术。该算法结合k-means方法和模拟退火算法(SA)求解约束条件下的多峰值函数全局最小值,在待求计算域内和边界自动生成无网格计算节点,且节点为计算域对应质心Voronoi结构的质心点。该算法可以普遍用于包括凹域和多连通域等任意形状域的布点计算,尤其适用于给定边界节点位置情况下域内无网格节点的生成问题。将所生成节点用线段连接起来,也可以直接得到有限元网格。 A k-means method was combined with a simulated annealing (SA) algorithm to determine point sets for meshless numerical analysis algorithems. The method can be used in all kinds of domains since it calculates the global minimum of a constrained multi-extrema function to get high-quality centroidal Voronoi tessellations for the region. The method can be used in any irregular domain including concave and multiply connected domains, and is especially useful for problems with prescribed boundary points. In addition, the method can be used to generate finite element meshes by just connecting the points with lines.
作者 刘岩 介玉新
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期959-962,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(50639060 50579029)
关键词 数值方法 无网格法 无单元法 模拟退火算法(SA) 质心Voronoi结构 k-means方法 numerical method meshless method element-freemethod simulated annealing (SA) centroidal Voronoitessellations k-means method
  • 相关文献

参考文献5

  • 1Lu Y Y, Belytschko T, Gu L. A new implementation of the element-free Galerkin method [J]. Comput Meth Appl Mech Eng, 1994, 113: 397-414.
  • 2蔡永昌,朱合华.岩土工程数值计算中的无网格方法及其全自动布点技术[J].岩土力学,2003,24(1):21-24. 被引量:13
  • 3朱合华,叶勇庚,李晓军,蔡永昌.任意形状区域的自动布点技术[J].工程力学,2004,21(5):94-99. 被引量:3
  • 4Du Q, Gunzburger M, Ju L L. Meshfree, probabilistic determination of point sets and support regions for meshless computing [J]. Comput Meth Appl Mech Eng, 2002, 191: 1349 - 1366.
  • 5Du Q, Wong Tak-win. Numerical studies of MacQueen's k-means algorithm for computing the centroidal Voronoi tessellations [J]. Computers and Mathematics with Applications, 2002, 44(3/4) : 511 - 523.

二级参考文献9

  • 1周本宽,曹中清,陈大鹏.面向对象有限元程序的类设计[J].计算结构力学及其应用,1996,13(3):267-278. 被引量:15
  • 2[6]Gordon W J and Hall C A. Construction of curvilinear Co-ordinates systems and applications to mesh generation[J]. Int. Num. Meth. Eng., 1973, 7: 461-477.
  • 3[8]L Paul Chew. Constrained delaunay triangulations[J]. Algorithmica, 1989, 4(1): 97-108.
  • 4[1]Zienkiewicz O C. The Finite Element Method. 3rd ed[M]. London: McGraw-Hill, 1977.
  • 5[2]Whiteman J R. The Mathematics of Finite Elements and Applications[M]. New York: Academic Press, 1973.
  • 6[3]Belytschko T, Krongauz Y, Organ D. Meshless methods: An overview and recent developments[J]. Comput Meth Appl Mech Eng., 1996, 139: 3-47.
  • 7[5]Zienkiewicz O C and Phillips D V. An Automatic Mesh Generation Scheme for Plane and Curved Surface by Isoparametric Co-ordinates [J]. Int. Num. Meth. Eng., 1971,3:519-528.
  • 8寇晓东,周维垣.应用无单元法追踪裂纹扩展[J].岩石力学与工程学报,2000,19(1):18-23. 被引量:48
  • 9宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展,2000,30(1):55-65. 被引量:66

共引文献14

同被引文献59

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部