期刊文献+

电解质组成对锂-硫电池电化学性能的影响 被引量:1

Effect of electrolyte on electrochemical performance of lithium-sulfur battery
下载PDF
导出
摘要 采用恒流充放电、循环伏安等方法并结合电解质的电导率和粘度的测试,研究了电解质对硫电极电化学性能的影响。实验以LiClO4为电解质,选用1,3-二氧戊环(DOL)、乙二醇二甲醚(DME)、四氢呋喃(THF)三种有机溶剂,配制了三种电解质:1mol/LLiClO4/(DOL+THF)(50∶50,体积比)、1mol/LLiClO4/(DME+DOL)(50∶50,体积比)、1mol/LLiClO4/(DME+THF)(50∶50,体积比)。比较了这三种电解质在锂-硫电池中的电化学性能,实验结果表明:在配制的电解质中,硫电极在2.3V和2.0V附近有两个放电电压平台,低电压平台的电位和电解质的粘度密切相关。使用1mol/LLiClO4/(DME+THF)(50∶50,体积比)的电解质时,硫电极有很好的大电流性能,首放比容量高达860mAh/g,当放电电流密度为0.6mA/cm2时,硫电极的充放电效率超过了80%。 The influence of electrolyte on the electrochemical performance of sulfur electrode was investigated by galvanostatic charge-discharge and cycling voltammetry methods combined with conductivity and viscosity measurements. By using LiClO4 as conductive salt, DME, DOL, THF as solvents, three electrolytes were prepared: 1 mol/L LiClO4/ (DOL+THF) (50 : 50,vol), 1 mol/L LiClO4 / ( DME+DOL ) (50 : 50,vol), 1 mol/L LiClO4 / ( DME+THF ) (50 : 50,vol). Electrochemical test of sulfur electrode was conducted in the three electrolytes. Charge-discharge test shows that there are two different voltage plateaus on the discharge profile, 2.3 V and 2.0 V respectively. The voltage of lower voltage plateau is highly dependent on the viscosity of the electrolyte. Sulfur electrode sustaines good discharge performance in 1 mol/L LiClO4/( DME+THF ) (50 : 50,vol) electrolyte, the initial discharge specific capacity is 860 mAh/g. When discharge current density is 0.6 mA/cm^2, efficiency of charge and discharge is above 80%.
出处 《电源技术》 CAS CSCD 北大核心 2008年第6期389-391,397,共4页 Chinese Journal of Power Sources
关键词 锂-硫电池 电解质 硫电极 电化学性能 lithium - sulfur battery electrolyte sulfur electrode electrochemical performance
  • 相关文献

参考文献6

二级参考文献15

  • 1[1]Liu M,Visco S J,De J L C.All-solid-state,thin-film,rechargeable lithium batteries basedon solid redox polymerization electrodes[J].J Electrochem Soc,1991,138(7):1 891-1 895.
  • 2[2]Marmorstein D.Electro-chemical performance of lithium/sulfur cells with three different polymer electrolytes[J].J Power Sources,2000,89:219-226.
  • 3[3]Visco S J.Polyorganodisulfide electrodes for solid-state batteries and electrochemical devices[J]. Solid State Ionics,1993,60:175-187.
  • 4[4]Naoi K,Kawase K I,Inoue Y.A new energy storage material:organosulfur compounds based on multiple sulfur-sulfur bonds[J].J Electrochem Soc,1997,144(6):L170-L172.
  • 5[5]Alexander G A.Electroactive,energy-storing,highly crosslinker,polysulfide-containing organic polymers for use in electrochemical cells[P].USP:08 995 122,1997.
  • 6[6]Weddigen G.Synthesis of sodium polysulphides[J].J Chem Research(S),1978:96.
  • 7[1]Smart M C,Ratnkumar B V,Surampudi S.Electrolytes for low tem perature lithium batteries on ternary mixtures of aliphatic carbonate[J].J Electrochem Soc,1999,146(2):486-492.
  • 8[2]Plichta E J,Behl W K.A low temperature electrolyte for lithium and lithium-ion batteries[J].J Power Sources,2000,88(2):192-196.
  • 9[3]Ratnkumar B V,Smart M C,Huang C K,et al.Lithium ion batteries for Mars exploration missions[J].Electrochimica Acta,2000,45(8-9):1 513-1 517.
  • 10[4]Herreyre S,Huchet O,Barusseau S,et al.New Li-ion electrolytes for low temperature applications [J].J Power Sources,2001,97-98:576-580.

共引文献24

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部