期刊文献+

降阶模型及其在大跨度屋盖结构风振中的应用研究 被引量:3

RESEARCH ON APPLICATION OF REDUCED ORDER MODEL IN WIND-INDUCED VIBRATION OF LONG-SPAN ROOF
下载PDF
导出
摘要 该文建立了一种适用于气弹系统中非线性结构的降阶模型及系统识别方法,并首次将结构降阶模型应用到大跨度屋盖风振结构模型的建立中。非线性结构采用降阶模型并通过高精度有限元模型的非线性系统识别来建立,该模型在结构的模态坐标中将应变能泛函表示为结构模态振幅的多项式函数,该多项式的系数由高精度有限元模型计算所得的模态和应变能信息确定。该方法对一大跨度屋盖的风振响应做了分析,计算结果与采用高精度模型所得结果和实验结果及用ANSYS计算结果进行了比较,结果符合良好。该文的结构降阶模型对于建立非线性结构模型是准确有效的。 A reduced order model and the corresponding system identification method are presented for constructing nonlinear structural model in aerodynamic system. And for the first time it is applied to constructing nonlinear structural model in wind-induced vibration of long-span roof. Reduced order model is adopted for the nonlinear structure and it is established by system identification of a high fidelity finite element model. Strain energy functional of the system is expressed as a polynomial of the structure's modal amplitudes in modal coordinates. And the unknown coefficients of the polynomial are determined by modes and strain energy information calculated using a high fidelity finite element model. Wind-induced responses of a long-span roof are calculated using the proposed method. The results agree well with those obtained from the high fidelity finite element model and experiments. The current reduced order model is suitable for constructing nonlinear structural model.
出处 《工程力学》 EI CSCD 北大核心 2008年第6期128-132,139,共6页 Engineering Mechanics
基金 辽宁省教育厅基金项目(202183391)
关键词 大跨度屋盖风振 结构降阶模型 高精度有限元模型 非线性系统识别 应变能泛函 wind-induced vibration of long-span roof reduced order model high fidelity finite element model nonlinear system identification strain energy functional
  • 相关文献

参考文献15

  • 1Dowell E. Eigenmode analysis in unsteady aerodynamics: Reduced order models [J]. AIAA Journal, 1996, 34(8): 1578-1588.
  • 2Hall K. Eigenmode analysis of unsteady flows about airfoils, cascades and wings [J]. AIAA Journal, 1994, 32(12): 2426-2432.
  • 3Epureanu B, Hall K, Dowell E. Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling [J]. Journal of Fluids and Structures, 2001, 15(2): 255-276.
  • 4Hall K, Thomas J, Dowell E. Reduced-order modeling of unsteady small-disturbance flows using a frequencydomain proper orthogonal decomposition technique[R]. AIAA Paper 99-0655, 1999.
  • 5Romanowski M. Reduced-order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes[R]. AIAA Paper 96-3981, 1996.
  • 6Hall K, Thomas J, Clark W. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique [J]. AIAA Journal, 2002, 40(5): 879-886.
  • 7Thomas J, Dowell E, Hall K. Nonlinear inviscid aerodynamic effects on transonic divergence flutter and limit cycle oscillations [J]. AIAA Journal, 2002, 40(2): 638-646.
  • 8Epureanu B I, Dowell E H. Compact methodology for computing limit-cycle oscillations in aeroelasticity [J]. Journal of Aircraft, 2003, 40(5): 955-963.
  • 9Gabbay L D, Mehner J E, Senturia S D. Computer-aided generation of nonlinear reduced-order dynamic macromodels-Ⅰ: Non-stress-stiffened case [J]. Journal of Microelectromechanical System, 2000, 9(2): 262-269.
  • 10Mehner J E, Gabbay L D, Senturia S D. Computer-aided generation of nonlinear reduced-order dynamic macromodels-Ⅱ: Non-stress-stiffened case [J]. Journal of Microelectromechanical System, 2000, 9(2): 276- 278.

同被引文献29

  • 1潘光,郭晓娟,胡海豹.半圆形随行波表面流场数值仿真及减阻机理分析[J].系统仿真学报,2006,18(11):3073-3074. 被引量:22
  • 2Epureanu B, Hall K, Dowell E. Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling[ J ]. Journal of Fluids and Structures,2001, 15:255 -276.
  • 3Hall K, Thomas J, Dowell E. Reduced-order modeling of unsteady small-disturbance flows using a frequency-domain proper orthogonal decomposition technique[ R]. AIAA Paper, 1999:99 - 655.
  • 4Romanowski M. Reduced-order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes [ R ]. AIAA Paper, 1996:96 - 3981.
  • 5Hall K, Thomas J, Clark W. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique [ J ]. AIAA Journal,2002, 40 (5) :879 - 866.
  • 6Thomas J, Dowell E, Hall K. Nonlinear inviscid aerodynamic effects on transonic divergence flutter and limit cycle oscillations [ J ]. AIAA Journal, 2002,40(2) :638 -646.
  • 7Namkooong K, Choi H, Yoo. Computation of dynamic fluid-structure interaction in two - dimensional laminar flows using combined formulation [J]. Journal of Fluids and Strncutres,2005 ,20 :51 -69.
  • 8Gerbeau J F, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging[ J ]. Comput Struct,2005,83 (2 -3) :155 - 165.
  • 9Gabby LD, Mehner J E, Senturia S D. Computer - aided generation of nonlinear resuced - order dynamic macromodels I : Non - stress - stiffenedcase[J]. Journal of Microelectromechanicnl System, 2000,9(2):262-269.
  • 10HALL K,THOMAS J,Clark W.Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J].AIAA Journal.2002,40(5):879-866.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部